DEPARTMENT OF COMPUTER SCENCE

Syllabus of
Bachelor's Degree in COMPUTER SCIENCE (BCA)

CHOICE BASED CREDIT SYSTEM SEMESTER SCHEME

UNDER NEW EDUCATION POLICY 2020
2021-22 ONWARDS

Approved by the BOS meeting held on $23^{\text {rd }}$ November 2021 Approved by the Academic Council meeting, held on 10-12-2021

Preamble

Computer Application (CA) has been evolving as an important branch of science and technology in last two decade and it has carved out a space for itself like computer science and engineering. Computer application spans theory and more application and it requires thinking both in abstract terms and in concrete terms.

The ever - evolving discipline of computer application has strong connections to other disciplines. Many problems in science, engineering, health care, business, and other areas can be solved effectively with computers and its applications, but finding a solution requires both computer science expertise and knowledge of the particular application domain.
Computer science has a wide range of specialties. These include Computer Architecture, Software Systems, Graphics, Artificial Intelligence, Mathematical and Statistical Analysis, Data Science, Computational Science, and Software Engineering.

Universities and other HEIs introduced programmes of computer application. Information Technology is growing rapidly. Increasing applications of computers in almost all areas of human endeavour has led to vibrant industries with concurrent rapid change in technology. Unlike other basic disciplines, developing core competency in this discipline that can be reasonably stable becomes a challenge.

In India, it was initially introduced at the Master (postgraduate) level as MCA and M.Tech. Later on, engineering programmes such as B.Tech and B.E in Computer Science \& Engineering and in Information Technology were introduced in various engineering College/Institutions to cater to the growing demand for trained engineering manpower in IT industries. Parallelly, BCA, BSc and MSc programmes with specialization in Computer Science were introduced to train manpower in this highly demanding area.

BCA (Basic) are aimed at undergraduate level training facilitating multiple career paths. Students so graduated, can take up postgraduate programmes in CS or MCA leading to research as well as R\&D, can be employable at IT industries, or can pursue a teaching profession or can adopt a business management career.

BCA (Basic) aims at laying a strong foundation of computer application at an early stage of the career. There are several employment opportunities and after successful completion of BCA, graduating students can fetch employment directly in companies as programmer, Web Developer, Software Engineer, Network Administrator, Data Scientist, or AI/ML personnel.

The Program outcomes in BCA are aimed at allowing flexibility and innovation in design and

Department of Computer Science

development of course content, in method of imparting training, in teaching learning process and in assessment procedures of the learning outcomes. The emphasis in BCA courses, in outcome-based curriculum framework, help students learn solving problems, accomplishing IT tasks, and expressing creativity, both individually and collaboratively. The proposed framework will help Students learn programming techniques and the syntax of one or more programming languages.

All students must, therefore, have access to a computer with a modern programming language installed. The computer science framework does not prescribe a specific language. The teacher and students will decide which modern programming languages students will learn. More importantly, students will learn to adapt to changes in programming languages and learn new languages as they are developed.

The present Curriculum Framework for BCA degrees is intended to facilitate the students to achieve the following.
\square To develop an understanding and knowledge of the basic theory of Computer Science and Information Technology with good foundation on theory, systems and applications such as algorithms, data structures, data handling, data communication and computation
\square To develop the ability to use this knowledge to analyse new situations in the application domain
\square To acquire necessary and state-of-the-art skills to take up industry challenges. The objectives and outcomes are carefully designed to suit to the above-mentioned purpose.
\square The ability to synthesize the acquired knowledge, understanding and experience for a better and improved comprehension of the real-life problems
\square To learn skills and tools like mathematics, statistics and electronics to find the solution, interpret the results and make predictions for the future developments
\square To formulate, to model, to design solutions, procedure and to use software tools to solve real world problems and evaluate

Department of Computer Science

The objectives of the Programme are:

1. The primary objective of this program is to provide a foundation of computing principles and business practices for effectively using/managing information systems and enterprise software
2. It helps students analyze the requirements for system development and exposes students to business software and information systems
3. This course provides students with options to specialize in legacy application software, system software or mobile applications
4. To produce outstanding IT professionals who can apply the theoretical knowledge into practice in the real world and develop standalone live projects themselves
5. To provide opportunity for the study of modern methods of information processing and its applications
6. To develop among students the programming techniques and the problem- solving skills through programming
7. To prepare students who wish to go on to further studies in computer science and related subjects.
8. To acquaint students to Work effectively with a range of current, standard, Office Productivity software applications

Program Outcomes: BCA (3 Years) Degree

1. Discipline knowledge: Acquiring knowledge on basics of Computer Science and ability to apply to design principles in the development of solutions for problems of varying complexity
2. Problem Solving: Improved reasoning with strong mathematical ability to Identify, formulate and analyze problems related to computer science and exhibiting a sound knowledge on data structures and algorithms.
3. Design and Development of Solutions: Ability to design and development of algorithmic solutions to real world problems and acquiring a minimum knowledge on statistics and optimization problems. Establishing excellent skills in applying various design strategies for solving complex problems.
4. Programming a computer: Exhibiting strong skills required to program a computer for various issues and problems of day-to-day applications with thorough knowledge on programming languages of various levels.
5. Application Systems Knowledge: Possessing a sound knowledge on computer application software and ability to design and develop app for applicative problems.
6. Modern Tool Usage: Identify, select and use a modern scientific and IT tool or technique for modeling, prediction, data analysis and solving problems in the area of Computer Science and making them mobile based application software.
7. Communication: Must have a reasonably good communication knowledge both in oral and writing.
8. Project Management: Practicing of existing projects and becoming independent to launch own project by identifying a gap in solutions.
9. Ethics on Profession, Environment and Society: Exhibiting professional ethics to maintain the integrality in a working environment and also have concern on societal impacts due to computer-based solutions for problems.
10. Lifelong Learning: Should become an independent learner. So, learn to learn ability.
11. Motivation to take up Higher Studies: Inspiration to continue educations towards advanced studies on Computer Science.

C5. Model Programme Structure for Bachelor of Computer Applications (Basic) with Computer Applications as Programme Core Subject with Practical

Sem.	Discipline Core (DSC) (Credits)	DisciplineElective (DSE) / Open Elective (OE) (Credits)	Ability Enhancement Compulsory Courses (AECC), Languages (Credits) ($L+T+P$)		Skill Enhancement Courses (SEC)			Total Credits
					Skill based (Credits) $(L+T+P)$	Value	ed (Credits) (L+T+P)	
1	$\begin{aligned} & \text { CA C-1 }(3+2) \\ & \text { CA C-2 }(3+2) \\ & \text { CA C-3 }(3) \\ & \hline \end{aligned}$	OE-1 (3)	$\begin{aligned} & \text { L1-1(3), L2-1(3) } \\ & \text { (4 hrs. each) } \end{aligned}$		SEC-1: Digital Fluency (2) $(1+0+2)$	$\begin{aligned} & \text { Yoga (1) } \\ & (0+0+2) \end{aligned}$	$\begin{aligned} & \text { Health \& Wellness (1) } \\ & (0+0+2) \end{aligned}$	26
11	$\begin{aligned} & \text { CA C-4 }(3+2) \\ & \text { CA C-5 }(3+2) \\ & \text { CA C-6 }(3) \\ & \hline \end{aligned}$	OE-2 (3)	$\begin{aligned} & \text { L1-2(3), L2-2(3) } \\ & \text { (4 hrs. each) } \end{aligned}$	Environmental Studies (2)		$\begin{aligned} & \text { Sports (1) } \\ & (0+0+2) \end{aligned}$	$\begin{aligned} & \hline \text { NCC/NSS/R\&R(S\&G)/ } \\ & \text { Cultural (1) (0+0+2) } \end{aligned}$	26
Exit option with Certificatein Computer Applications (with the completion of courses equivalent to a minimum of 48 credits)								
III	$\begin{aligned} & \text { CA C-7 }(3+2) \\ & \text { CA C-8 }(3+2) \\ & \text { CA C-9 }(3) \\ & \hline \end{aligned}$	OE-3 (3)	$\begin{aligned} & \text { L1-3(3), L2-3(3) } \\ & \text { (4 hrs each) } \end{aligned}$		SEC-2: Artificial Intelligence or some other $\operatorname{SEC}(2)(1+0+2)$	$\begin{aligned} & \text { Sports (1) } \\ & (0+0+2) \end{aligned}$	$\begin{aligned} & \text { NCC/NSS/R\&R(S\&G)/C } \\ & \text { ultural (1) }(0+0+2) \end{aligned}$	26
IV	$\begin{aligned} & \text { CA C-10 }(3+2) \\ & \text { CA C-11 }(3+2) \\ & \text { CA C-12 }(3) \\ & \hline \end{aligned}$	OE-4 (3)	$\begin{aligned} & \text { L1-4(3), L2-4(3) } \\ & (4 \text { hrs each }) \end{aligned}$	Constitution of India (2)		$\begin{aligned} & \text { Sports (1) } \\ & (0+0+2) \end{aligned}$	NCC/NSS/R\&R(S\&G)/C $\text { ultural (1) }(0+0+2)$	26
Exit option with Diploma in Computer Applications (with the completion of courses equivalent to a minimum of 96 credits)								
V	$\begin{array}{\|l\|l\|} \hline \text { CA C-13 }(3+2) \\ \text { CA C-14 }(3+2) \\ \text { CA C-15 }(3) \\ \hline \end{array}$	CAE-1 (3) Vocational-1 (3)			SEC-3: Cyber Security or some other SEC (2) $(1+0+2)$	$\begin{aligned} & \text { Sports (1) } \\ & (0+0+2) \end{aligned}$	$\begin{aligned} & \text { NCC/NSS/R\&R(S\&G)/C } \\ & \text { ultural (1) }(0+0+2) \end{aligned}$	23
VI	$\begin{aligned} & \hline \text { CA C-16 }(3+2) \\ & \text { CA C-17 }(3+2) \\ & \text { CA C-18 }(3) \\ & \hline \end{aligned}$	CA E-2 (3) Vocational-2 (3) Internship (2)			SEC-4: Professional Communication (2)	$\begin{aligned} & \hline \text { Sports (1) } \\ & (0+0+2) \end{aligned}$	$\begin{aligned} & \text { NCC/NSS/R\&R(S\&G)/ } \\ & \text { Cultural (1) }(0+0+2) \end{aligned}$	25

Curriculum for BCA

Sem	Core Courses	Hour / Week		DS Elective Courses	Hous/ Week
		Theory	Lab		
1	i. Fundamentals of Computers ii. Programming in C iii. Mathematical Foundation iv. LAB: Information Technology v. LAB: C Programming	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$		
2	```i. Discrete Mathematical Structures ii. Data Structures using C iii. Object Oriented Concepts using JAVA iv. LAB: Data Structure v. LAB: JAVA Lab```	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$		
3	i. Data Base Management Systems ii. C\# and DOT NET Framework iii. Operating Systems Concepts iv. LAB: DBMS v. LAB: C\# and DOT NET Framework	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$		
4	i. Python Programming ii. Computer Multimedia and Animation iii.Computer Communication and Networks iv. LAB: Multimedia and Animation v. LAB: Python programming	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$		
5	i. Internet Technologies ii. Statistical Computing and R Programming iii.Software Engineering iv. LAB: R Programming v. LAB: JAVA Script, HTML and CSS vi. Vocational 1	3 3 3 3	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	(a) Cyber Law and Cyber Security (b) Cloud Computing (c) Business Intelligence	3 3 3
6	i. Artificial Intelligence and Applications ii. PHP and MySQL iii. LAB: PHP and MySQL iv. PROJECT v. Vocational 2	$\begin{aligned} & 3 \\ & 3 \end{aligned}$ 3	$\begin{gathered} 4 \\ 12 \end{gathered}$	(a) Fundamentals of Data Science (b) Mobile Application Development (c) Embedded Systems	3 3 3

TABLE I: COURSE STRUCTURE FOR BCA

| Semester | Course Code | | | $\begin{array}{c}\text { Total Credit } \\ \text { of OE, } \\ \text { Languages, } \\ \text { CAE, Voc, }\end{array}$ |
| :--- | :--- | :--- | :--- | :---: | :---: |
| | | | | |
| | | | | |$\}$

Department of Computer Science

TABLE II: CS COURSE DETAILS FOR BCA

$\begin{gathered} \text { Course- } \\ \text { Type } \end{gathered}$	Course Code as referred above	Compulsory/ Elective	List of compulsory courses and listof option of elective courses. (A suggestive list)
CA	CAC01, CAC02, CAC03, CAC04, CAC05, CAC06, CAC07, CAC08, CAC09, CAC10, CAC11, CAC12, CAC13, CAC14, CAC15, CAC16, CAC17, CAC18, CAC19, CAC20, CAC21	Compulsory	As Mentioned in Table I
CA E	CAE-1A	Elective	Cyber Law and Cyber SecurityOR Business IntelligenceOR Fundamentals of Data Science
	CAE-2A	Elective	Fundamentals of Data ScienceOR Mobile Application DevelopmentOR Embedded Systems
	CAE-3A	Elective	Data CompressionOR Internet of Things (IoT)OR Data Analytics
	CAE-4A	Elective	Open-source Programming OR Storage Area NetworksOR Pattern RecognitionOR Machine Learning
Vocational	Vocational -1	Elective	DTP, CAD and MultimediaOR Hardware and Server MaintenanceOR
	Vocational -2	Elective	Computer NetworkingOR
	Vocational -3	Elective	Digital MarketingOR Office Automation
	Vocational -4	Elective	
SEC	SEC 1	Compulsory	Health \& Wellness/ Social \& Emotional Learning
	SEC 2	Compulsory	Sports/NCC/NSS etc
	SEC 3	Compulsory	Ethics \& Self Awareness
	SEC 4	Compulsory	Professional Communication
AECC	AECC1	Compulsory	Environmental Studies
	AECC2	Compulsory	Constitution of India
Language 1	L1-1, L1-2, L1-3, L1-4	Compulsory	Kannada/Functional Kannada
Language 2	L2-1, L2-2, L2-3, L4-4	Elective	English/Hindi/French/ Additional English/ etc.

Course Contents for BCA: Semesters I and II

Semester: I

Course Title: Fundamentals of Computers

Course Code: CAC01	
Course Credits: 03	Hours/Week: 03
Total Contact Hours: 42	Formative Assessment Marks: 40
Exam Marks: 60	Exam Duration: 03

Course Outcomes (COs):

After completing this course satisfactorily, a student will be able to:

- Understand the fundamentals of computer system
- Identify different components within the computer system
- Understand different types of input and output devices
- Demonstrate the working concepts of different devices connected to computer
- Explain different generations of programming languages and their significance
- Understand the use of Word processing, Spreadsheet, Presentation and DBMS applications
- Understand Digital computer and digital systems functioning

Course Contents

| Contents | Hours |
| :--- | :---: | :---: |
| Unit - 1 | |
| Computer Basics: Introduction, Characteristics computers, Evolution computers, Generations of
 computers, Classification of computers, the computer system, Application of computers.
 Computer Architecture: Introduction, Central processing unit- ALU, Registers, Control unit,
 system bus, main memory unit, cache memory
 Input devices: Introduction, Types of input devices, Keyboard, Mouse, Track ball, Joystick light
 pen, Touch screen and track pad. Speech recognition, digital camera, webcam, flatbed scanner
 Output devices: Types of output, Classification of output devices, Printers - Dot matrix, Ink-jet, | 12 |
| Laser, Hydra, Plotter, Monitor-CRT, LCD, Differences between LCD and CRT | |

Department of Computer Science

Computer software: Introduction, software definition, relationship between software and	
hardware, software categories, Installing and uninstalling software, software piracy,	
software terminologies.	
Computer programming languages: Introduction, Developing a program, Program development	
cycle, Types of programming languages, generation of programming languages, Features of a	
good programming language.	
Introduction to Computer Security: Types of computer crimes, Computer security,	
Emerging security solutions, crime; security, computer Crime by authorized users, computer crime through unauthorized access, potentially malicious computer programs, Introduction to cryptography. Computer Viruses, Trojan horse \& Worms: Introduction, types; categories of viruses, Virus vaccines	
Digital Computers and Digital System: Introduction to Number System, Decimal number, Binary number, Octal and Hexadecimal numbers, Number base conversion, Complements, Binary codes, Binary arithmetic, Addition, Subtraction in the 1's and 2's complements system, Subtraction in the 9's and 10's complement system. Boolean Algebra: Basic definitions, Axiomatic definition of Boolean algebra, Basic theorems and properties of Boolean algebra, Venn diagram.	
Unit-4	10
Digital logical gate: Boolean functions, Canonical and Standard forms, Minterms, Maxterms, other logic operations, Digital logic gates, Universal gates. Simplification of Boolean function: The map method, Two and three variable maps, Four- variable maps, Don't care conditions, Product of sum simplification.	

Text Books:

1. ITL Education Solution Limited, Introduction to Information Technology, Second Edition, Pearson
2. M. Morris Mano, Digital Logic and Computer design, PHI, 2015

Reference Books:

1. Pradeep K. Sinha and Priti Sinha, Computer Fundamentals, Sixth Edition, BPB Publication.
2. David Riley and Kenny Hunt, Computational thinking for modern solver, Chapman \& Hall/CRC.
3. J. Glenn Brookshear, Computer Science: An Overview, Twelfth Edition, Addison-Wesley
4. R.G. Dromey, How to solve it by Computer, PHI.

Course Title: Programming in C

Course Code: CAC02	
Course Credits: 03	Hours/Week: 03
Total Contact Hours: 42	Formative Assessment Marks: 40
Exam Marks: 60	Exam Duration: 03

Course Outcomes (COs):

After completing this course satisfactorily, a student will be able to:

- Confidently operate Desktop Computers to carry out computational tasks
- Understand working of Hardware and Software and the importance of operating systems
- Understand programming languages, number systems, peripheral devices, networking, multimedia and internet concepts
- Read, understand and trace the execution of programs written in C language
- Write the C code for a given problem
- Perform input and output operations using programs in C
- Write programs that perform operations on arrays

Course Contents

Contents	Hours
Unit - 1	
Problem Solving techniques: Introduction, Problem solving procedure. Algorithm: Steps involved in algorithm development, Algorithms for simple problems (To find largest of three numbers, factorial of a number, check for prime number, check for palindrome,	
Count number of odd, even and zeros in a list of integers)	
Flowcharts: Definition, advantages, Symbols used in flow charts. Flowcharts for simple	
problems mentioned in algorithms. Psuedocode.	
Overview of C : History of C, Importance of C Program, Basic structure of a C-program, Execution	12
of C Program.	
C Programming Basic Concepts: Character set, C token, Keywords and identifiers, Constants,	
Variables, data types, Declaration of variables, assigning values to variables, defining symbolic	
constants.	
Input and output with C: Formatted I/O functions - printf and scanf, control stings and escape	
sequences, output specifications with printf functions; Unformatted I/O functions to read and display	
single character and a string - getchar, putchar, gets and puts functions.	

Unit - 2	
Operators \& Expressions: Arithmetic operators; Relational operators; Logical operators; Assignment operators; Increment \& Decrement operators; Bitwise operators; Conditional operator; Special operators; Operator Precedence and Associatively; Evaluation of arithmetic expressions; Type conversion. Control Structures: Decision Making and Branching -Decision making with if statement, simple if statement, the if else statement, nesting of if ... else statements, the else if ladder, the switch statement, the ?: operator, the go to statement. Decision making and looping - The while statement, the do statement, for statement, nested loops, exit, break, jumps in loops.	10
Unit - 3	
Derived data types in C: Arrays - declaration, initialization and access of one-dimensional and twodimensional arrays. programs using one- and two-dimensional arrays, sorting and searching arrays. Handling of Strings: Declaring and initializing string variables, reading strings from terminal, writing strings to screen, Arithmetic operations on characters, String handling functions - strlen, strcmp, strcpy, strstr and strcat; Character handling functions - toascii, toupper, tolower, isalpha, isnumeric etc. Pointers: Understanding pointers, accessing the address of a variable, declaring and initializing pointers, accessing a variable through its pointer, pointer expression, pointer increments and scale factor, pointers and arrays, pointer and strings.	10
Unit - 4	
User-defined functions: Need for user-defined functions, Declaring, defining and calling C functions, return values and their types, Categories of functions: With/without arguments, with/without return values. Nesting of functions. Recursion: Definition, example programs. Structures and unions: Structure definition, giving values to members, structure initialization, comparison of structure variables, arrays of structures, arrays within structures, Structure and functions, structures within structures. Unions	10

Department of Computer Science

Text Book:

1. E. Balagurusamy, Programming in ANSI C, 7th Edition, Tata McGraw Hill

Reference Books:

1. Herbert Schildt, C: The Complete Reference, 4th Edition
2. Brain W. Kernighan, C Programming Language, ${ }^{2 \text { nd }}$ Edition, Prentice Hall Software
3. Kernighan \& Ritchie: The C Programming Language, $2^{\text {nd }}$ Edition, PHI
4. Kamthane, Programming with ANSI and TURBO C, Pearson Education
5. V. Rajaraman, Computer Programming in C, $2^{\text {nd }}$ Edition, PHI
6. S. Byron Gottfried, Programming with C, $2^{\text {nd }}$ Edition, TMH
7. Yashwant Kanitkar, Let us C, $15^{\text {th }}$ Edition, BPB
8. P.B. Kottur, Computer Concepts and Programming in C, $23^{\text {rd }}$ Edition, Sapna Book House

Department of Computer Science

Course Title: Mathematical Foundation

Course Code: CAC03	Course Title: Mathematical Foundation
Course Credits: 03	Hours/Week: 03
Total Contact Hours: 42	Formative Assessment Marks: 40
Exam Marks: 60	Exam Duration: 03

Course Outcomes (COs):

- Study and solve problems related to connectives, predicates and quantifiers under different situations.
- Develop basic knowledge of matrices and to solve equations using Cramer's rule.
- Know the concept of Eigen values.
- To develop the knowledge about derivatives and know various applications of differentiation.
- Understand the basic concepts of Mathematical reasoning, set and functions

Course Contents:

Contents	Hours			
Unit - 1				
Algebra: Logarithms- Introduction, Definition, Laws of operations, change of base Binomial theorems- Introduction, Binomial theorem, Position of terms. Analytical geometry: Introduction, directed line, midpoint, distance between two points, Section formula, external division, coordinates of a centroid, Area of a triangle. The straight line - slope of a straight line, different forms of equations of the straight line. Circle -The equation of a circle, different forms of circles, General equation of the circle, equation of tangent and normal to the circle.	12			
Unit - 2				
Trigonometry: Introduction, Measurement of angles, trigonometric functions, relation between trigonometric functions, signs of trigonometric functions, trigonometric functions of standard angles.				
Calculus: Limit of function, continuity of a function.				
Differentiation: Derivative of a function of one variable, Power function, constant with a function,	10			
sum of functions, product of two functions, quotient of two functions.				
Integration- Indefinite integral, rules of integration, some standard results and examples, definite				
integral.				
Matrix Algebra: Definition, types of matrices, algebra of matrices - addition of matrices, subtraction of matrices, multiplication of matrices, determinant of a matrix, Adjoint of a matrix, orthogonal and unitary matrix, rank of a matrix, echelon form of a matrix, normal form of a matrix, equivalence of				

Department of Computer Science

matrices	10
Unit - 4	
Inverse of a matrix, Characteristic equation of a matrix, Cayley Hamilton theorem, Eigen values. System of Linear equations: solution of Linear homogeneous and non-homogeneous equations (matrix method), Cramer's rule Arithmetic progression: Definition, formula for nth term, sum to n terms, Arithmetic mean, problems Geometric progression: Definition, formula for nth term, sum to n terms, geometric mean, problems	10

Text Books:

1.C Sanchethi and V K Kapoor,Business Mathematics, Sulthan Chand \&Sons Educational publishers, New Delhi, Eleventh Revised Edition
2.P. R. Vittal-Business Mathematics and Statistics, Margham Publications, Chennai
3.Pundir \&S.K. Pundir, A Text Book of BCA Mathematcis - I, Rimple A, Pragatis Edition (IV)
4.B. S. Vatsa-Discrete Mathematics -New Age International Limited Publishers, New Delhi

Course Code: CAC01P	Course Title: Information Technology Lab
Course Credits: 02	Hours/Week: 04
Total Contact Hours: 52	Formative Assessment Marks: 20
Exam Marks: 30	Exam Duration: 03

Practice Lab

1. Identification of the peripherals of a computer, components in a CPU and their functions.
2. Assembling and disassembling the system hardware components of personal computer.
3. Basic Computer Hardware Trouble shooting.
4. LAN and WiFi Basics.
5. Operating System Installation - Windows OS, UNIX/LINUX, Dual Booting.
6. Activities using word processing, presentation and spreadsheet software
7. Tasks involving Internet Browsing

Information Technology Lab

Part A: Word Processing \& Presentation

I. Word Processing

1. Prepare a document using different formatting tools

Highlights of the Nationall Education Policy (NEP') 2020

Note4Students
From UPSC perspective, the following things are important :
Prelims level = National Education Palicy
Mains level : Need for imbibing competitiveness in Indian education system
$\$ \begin{aligned} & \text { ew Policy aims for universalization of education from pre-school to secondary level with } 100 \\ & \% \text { Gross Enrolment Ratio (GER) in school education by } 2030 \text {. NEP } 2020 \text { will bring } 2 \text { crores out }\end{aligned}$ of school children back into the mainstream through the open schooling system.
$*$ The current $10+2$ system to be replaced by a new $5+3+3+4$ curricular structure corresponding to ages $3-8,8-11,11-14$, and $14-18$ years respectively. This will bung the hitherto wheerered age
 stare for the dewellomenent of mentall faculities of a chilld.

* The new system will have 12 years of schooling with three years of Anganwadi/ pre-schooling. - Emphasis on Foundational Literacy and Numeracy, no rigid separation between academic streams, extracurricular, vocational streams in schools; Vocational Education to start from Class 6 with Internships
- Teaching up to at least Grade 5 to be in mother tongue/regional language. No language will be imposed on any student.
- Assessment reforms with 360° Holistic Progress Card, tracking Student Progress for achieving

Learning Outcomes

- A new and comprehensive National Curriculum Framework for Teacher Education, NCFTE 2021 , will be formulated by the NCTE in consultation with NCERT.
- By 2030, the minimum degree qualification for teaching will be a 4-year integrated B.Ed. degree.
- Gross Enrolment Ratio in higher education to be raised to 50% by 2035 ; 3.5 crore seats to be
added in higher education.
- The policy envisages broad-based, multi-disciplinary, holistic Under Graduate Program with flexible curricula, creative combinations of subjects, integration of vocational education and multiple entries and exit points with appropriate certification.
- Academic Bank of Credits to be established to facilitate Transfer of Credits

ultidisciplinary Education and Research Universities (MERUs), at par with IITs, IIMs, to be set up as models of best multidisciplinary education of global standards in the country.
Affiliation of colleges is to be phased out in
15 years and a stage-wise mechanism is to
$\frac{d f}{d t}=\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h}$
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
$(a-b)^{2}=(a+b)^{2}-4 a b$
$a^{2}+b^{2}=(a-b)^{2}+2 a b$

2. Prepare a document using SmartArt and Shapes tools

Organization Chart - AAdministration Faridabad Division

3. Prepare a document with table to store sales details of a company for different quarters and calculate total, average and find maximum, minimum sales value.

TIME TABLE

Class : BCA		Room No. 206					
Day	I	II	III	IV		V	VI
Monday							
Tuesday							
Wednesday							
Thursday							
Friday							
Saturday							

4. Prepare interview call letters for five candidates describing about the company and instructions about the interview. Use Mail merge fataryiew call Letter Format

Date:

IName of the candidate)
|Address|
Dear Iname of the candidate]

This is to the reference of your application for the job [name of the joj) indicating interest in seeking employment in our organisation. We thank you for the same.

We would like to inform you that your profile is being shortlisted for the job role and is best sulted for it. Therefore we would like to take a face to face interview with you on [date of interviewl at Ivenue details).

We hope that the venue is suitable for you. If not please get in touch with us, so that we can arrange the date and venue according to your availability.

The company will reimburse you all the expenses ineurred by you for this interview. This letter has an attachment in which you need to fill the details and carry it along on the date of interview. Please carry your CV also along with you.

Kindly confirm your availability for the date and venue. If there are any changes to be done, please contact us at phone number l $\beta 8 \beta \times \times \times \times 998$ l and email id: abendemail.com.

We look forward to seeing you.
Regards.
Name of the Managep
Designation Name
Company name

II. Presentation

1. Create a presentation (minimum 5 slides) about your college. It should contain images, chart, Bulletted text,
2. Create a presentation (minimum 5 slides) to advertise a product. The slides should be displayed automatically in a loop. Make use of Transition and Animations.
3. A simple quiz program. Use hyperlinks to move to another slide in the presentation to display the result and correct answer/wrong answer status. Use at least four questions.

Part B: Spreadsheet

(Note: Give proper titles, column headings for the worksheet. Insert 10 records for each exercise in such a way to get the result for all the conditions. Format the numbers appropriately wherever needed).

1. Create a worksheet to maintain student information such as RollNo, Name, Class, Marks in three subjects of 10 students. Calculate total marks, average and grade. Find grade for Distinction, First class, Second class, Pass and Fail using normally used conditions.

- Using custom sort, sort the data according to class: - Distinction first, FirstcClass next, and so on. Within each class, average marks should be in descending order.
- Also draw the Column Chart showing the RollNo versus Average scored.
(Note: Worksheet creation and for atting 4 marks, calculations: 5 marks, sorting: $\mathbf{3}$ marks, chart: 3 marks)

2. Prepare a worksheet to store details of Electricity consumed by customers. Details are Customer No, Customer Name, Meter No, Previous meter reading, Current meter reading of 10 customers. Calculate total number of units consumed and total amount to be paid by each consumer using following conditions:

- If unit consumed is up to 30 , charge is 100 .
- 31 to 100 units, 4.70 per unit
- 101 to 200 units, 6.25 per unit
- Above 200 units, 7.30 per unit.
- Use Data validation to see that current reading is more than previous reading.
- Arrange the records in the alphabetic order of names.
- Filter the records whose bill amount is more than Rs. 1500.
(Note: Worksheet creation and formatting $\mathbf{4}$ marks, Data validation: $\mathbf{2}$ marks, calculations: $\mathbf{5}$ marks, sorting: $\mathbf{2}$ marks, filtering: $\mathbf{2}$ marks)

3. Create Employee worksheet having EmpNo, EmpName, DOJ, Department, Designation and Basic Pay of 8 employees. Calculate DA, HRA, Gross Pay, Profession Tax, Net Pay, Provident Fund as per the rule :

- $\mathrm{DA}=30 \%$ of basic pay
- HRA $=10 \%$ of basic pay if basic pay is less than $25000,15 \%$ of basic pay otherwise.
- \quad Gross $=$ DA + HRA + Basic pay
- Provident fund $=12 \%$ of Basic pay or Rs.2000, whichever is less.
- Profession Tax $=$ Rs. 100 if Gross pay is less than 10000 , Rs. 200 otherwise.
- NetPay $=$ Gross $-($ Professional tax + Provident Fund $)$
- Using Pivot table, display the number of employees in each department and represent it using Pie chart.
(Note: Worksheet creation and formatting 4 marks, calculations: $\mathbf{5}$ marks, Pivot table: $\mathbf{3}$ marks,

Chart: 3 marks)

4. Create a table COMMISSION containing the percentage of commission to be given to salesmen in different zones as follows:

Zone	Percentage
South	10
North	12.5
East	14
West	13

Create another table SALES in the same worksheet to store salesman name, zone name, place, name of the item sold, rate per unit, quantity sold. Calculate total sales amount of each salesman. Referring the COMMISSION table, write the formula to compute the commission to be given.(Hint: Use if function and
absolute cell addresses)
Using advanced filtering show the result in other parts of the worksheet.

- Show the records of various zones separately.
- Show the records of only East and West zones.
- Display the details of the items sold more than 50 , in South or North zones.
(Note: Worksheet creation and formatting: 4 marks, calculations: 5 marks, filtering: $\mathbf{6}$ marks) Evaluation Scheme for Lab Examination :

Assessment Criteria		Marks
Activity - 1 from Part A	Word Processing / Presentation	10
Activity - 2 from Part B	Spreadsheet	15
Practical Record	05	
Total	$\mathbf{3 0}$	

Course Title: C Programming Lab

Course Code: CAC02P	Course Title: C Programming Lab
Course Credits: 02	Hours/Week: 04
Total Contact Hours: 52	Formative Assessment Marks: 20
Exam Marks: 30	Exam Duration: 03

Programming Lab

Part A:

1. Program to read marks of five subjects, calculate percentage of marks and to display appropriate grade declaration message (using else-if ladder)
2. Program to find the greatest of three numbers (using nested if statement)
3. Program to read two integer values \& a operator as character and perform basic arithmetic operations on them using switch case (,,$+-{ }^{*}$, / operations)
4. Program to reverse a number and find the sum of individual digits. Also check for palindrome.
5. Program to read numbers from keyboard continuously till the user presses 999 and to find the sum of only positive numbers
6. Program to count occurrences of a character in a string.
7. Program to calculate and display the first ' n ' Fibonacci numbers
8. Program to find given number is a prime or not.
9. Program to read a string and find a) length b) reverse of it c) check palindrome string d) merge original \& reversed string (using built in string library functions)
10. Program to search for a number in a list of numbers using one-dimensional array.

Part B:

1. Program to find the largest and smallest elements with their position in a one-dimensional array
2. Program to read ' n ' integer values into a single dimension array and arrange them in ascending order using bubble sort method.
3. Program to perform addition and subtraction of two Matrices
4. Program to display factorial of first ' n ' integers using recursive function.
5. Program to check a number is a Armstrong by defining isArm() function
6. Program to read a string and count number of letters, digits, vowels, consonants, spaces and special characters present in it.
7. Program sort a list of strings in ascending order using Pointers
8. Program to add two distances in the inch-feet format using structures (convert inches to feet if greater than 12)
9. Program to enter the information of a student like name, register number, marks in three subjects into a structure and display total, average and grade Display details in a neat form.
10. Program to input Name of the branches, Total sales of company into an array of structures. Display branch details in a tabular format. Also display the branch name that recorded the highest sales.

Evaluation Scheme for Lab Examination :

Assessment Criteria		Marks
Program - 1 from Part A	Writing the Program	5
	Execution \& Formatting	5
Program -2 from Part B	Writing the Program	7
	Execution \& Formatting	8
Practical Record	Total 05	$\mathbf{3 0}$

Course Title: Office Automation

Course Code: CACOE1/DSCOE1	Course Title: Office Automation
Course Credits: 03	Hours/Week: 03
Total Contact Hours: 42	Formative Assessment Marks: 40
Exam Marks: 60	Exam Duration: 03 Hours

Course Outcomes (COs):

After completing this course satisfactorily, a student will be able to:

- Compare and contrast various types of operating systems
- Explain the purpose of office automation
- Describe how information is stored and retried in/from computer memory
- Know about various types of office automation software and their applications
- Create document using word processing software
- Design presentation using presentation software
- Create worksheets using spreadsheet software
- Store and retrieve data in/from database management application

Course Contents

| Contents | Hours |
| :--- | :---: | :---: |
| Unit - 1 | |
| Computer software : Introduction, Software definition, Software categories, Installing and
 uninstalling software, Software piracy, Software terminologies
 Introduction to windows Operating System, operating with windows, GUI, use of help features,
 starting an application, essential accessories, creating shortcuts, windows explorer, control panel,
 finding folders and files, System utilities.
 MS-Office : Introduction, Office user interface, Microsoft office Components
 MS-Word: Introduction, Starting MS-Word, Microsoft word Environment working with word
 documents, working with text, working with tables checking spelling and grammar, adding graphs to
 the document, mail merge, header and footers, page numbers, protect the document, working with
 formatting tools. | |

Department of Computer Science

| MS-Excel: Introduction, starting MS Excel, Microsoft Excel environment, Working with Excel
 workbook, Working with worksheet - Entering data, Excel formatting tips and Techniques,
 Generating graphs, Formulas and Functions, Inserting charts, Sorting, Pivot Tables, data extraction,
 adding clip art, add an image from a file, Printing in Excel . | 10 |
| :--- | :---: | :---: |
| Unit - 3 | |
| MS-Power point- Starting MS-Power Point, Working with power point -, Creating, Saving and
 Printing a presentation, Working with Animation, Adding a slide to presentation, Navigating through a
 presentation, Slide-sorter, Slide-show, Editing slides, Working with Graphics and Multimedia in
 PowerPoint (Inserting Photo, Video \& Sound).
 The Internet : Basic internet terms, Internet applications, Internet tools, Web browser, Web browser
 features, Internet Explorer environment, Electronic mail, Email address structure, Advantages and
 disadvantages of email. | 10 |
| Dnit - 4 | |
| Database fundamentals- Basic database terms, Database Management System
 MS-Access: Introduction to Access, Creating Tables and Database, Data Type and Properties, Adding | |
| \& Deleting Field in Table, Primary Key Fields, Queries, Forms: The Forms wizard saving forms, | |
| Modifying forms, Pages, Macro, Module, Reports, Printing Report, Forms | |

Text Book:

1. ITL Education Solution Limited, Introduction to Information Technology, Second Edition., Pearson

Reference Books:

1. Peter Norton, Introduction to Computers, 7th edition, Tata McGraw Hill Publication, 2011 2)
2. Anita Goel, Computer Fundamentals, Pearson Education, 2011.
3. Linda Foulkes, Learn Microsoft Office 2019: A comprehensive guide to getting started with Word, PowerPoint, Excel, Access, and Outlook, Packt Publishing Limited, 2020
4. Bittu Kumar, Mastering MS Office: Concise Handbook With Screenshots, V\&S Publishers, 2017

Semester: II

Course Title: Data Structures using C

Course Code: CAC04	Course Title: Data Structures using C
Course Credits: 03	Hours/Week: 03
Total Contact Hours: 42	Formative Assessment Marks: 40
Exam Marks: 60	Exam Duration: 03 Hours

Course Outcomes (COs):

After completing this course satisfactorily, a student will be able to:

- Describe how arrays, records, linked structures, stacks, queues, trees, and graphs are represented in memory and used by algorithms
- Describe common applications for arrays, records, linked structures, stacks, queues, trees, and graphs
- Write programs that use arrays, linked structures, stacks, queues, trees, and graphs
- Demonstrate different methods for traversing trees
- Compare alternative implementations of data structures with respect to performance
- Describe the concept of recursion, give examples of its use
- Discuss the computational efficiency of the principal algorithms for sorting, searching, and hashing

Course Contents

Contents	Hours			
Unit - 1				
Introduction to data structures: Introduction, Basic terminology; Elementary Data Organization, Data Structures, Data Structure Operations Introduction to Algorithms, Preliminaries: Introduction, Algorithmic notations, Control structure. Recursion: Definition; Recursion Technique Examples -Factorial, Fibonacci sequence, Towers of Hanoi. Arrays: Basic Concepts - Definition, Declaration, Initialisation, Operations on arrays, Types of arrays, Representation of Linear Arrays in memory, Traversing linear arrays, Inserting and deleting elements, Multidimensional arrays- Two Dimensional Arrays Representation of two- dimensional arrays, Sparse matrices. Sorting: Selection sort, Bubble sort, Quick sort, Insertion sort, Merge sort				
Unit - 2				

Department of Computer Science

> Searching : Definition, Sequential Search, Binary search
> Dynamic memory management: Memory allocation and de-allocation functions - malloc, calloc, realloc and free.
> Linked list: Basic Concepts - Definition and Representation of linked list, Types of linked lists -
> Singly linked list, Doubly liked list, Header linked list, Circular linked list, Representation of Linked list in Memory; Operations on Singly linked lists- Traversing, Searching, Insertion, Deletion, Memory allocation, Garbage collection

Unit - 3

Stacks: Basic Concepts -Definition and Representation of stacks- Array representation of stacks, Linked representation of stacks, Operations on stacks, Applications of stacks, Infix, postfix and prefix notations, Conversion from infix to postfix using stack, Evaluation of postfix expression using stack, Application of stack in function calls.

Queues: Basic Concepts - Definition and Representation of queues- Array representation of Queues, Linked representation of Queues, Types of queues - Simple queues, Circular queues, Double ended queues, Priority queues, Operations on queues
Unit - 4 terminal \& non-terminal nodes, degree of a node, level, edge, path, depth
Binary tree: Type of binary trees - strict binary tree, complete binary tree, binary search tree,; Array representation of binary tree, Traversal of binary tree- preorder, inorder and postorder traversal
Graphs: Terminologies, Matrix representation of graphs; Traversal: Breadth First Search and Depth first search.

Text Books :

1. Seymour Lipschutz, Data Structures with C, Schaum's Outlines Series, Tata McGraw Hill, 2011
2. R. Venkatesan and S. Lovelyn Rose, Data Structures, First Edition: 2015, Wiley India Pvt. Ltd. Publications

Reference Books:

1. Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures, Computer Science Press, 1982.
2. Aaron M. Tenenbaum, Data structures using C, First Edition, Pearson Education
3. Kamathane, Introduction to Data structures, Pearson Education, 2004
4. Y. Kanitkar, Data Structures Using C, Third Edition, BPB
5. Padma Reddy: Data Structure Using C, Revised Edition 2003, Sai Ram Publications.
6. Sudipa Mukherjee, Data Structures using C - 1000 Problems and Solutions, McGraw Hill Education, 2007

Course Title: Object Oriented Programming with JAVA

Course Code: CAC05	Course Title: Object Oriented Programming with JAVA
Course Credits: 03	Hours/Week: 03
Total Contact Hours: 42	Formative Assessment Marks: 40
Exam Marks: 60	Exam Duration: 03 Hours

Course Outcomes (COs):

After completing this course satisfactorily, a student will be able to:

- Understand the features of Java and the architecture of JVM
- Write, compile, and execute Java programs that may include basic data types and control flow constructs and how type casting is done
- Identify classes, objects, members of a class and relationships among them needed for a specific problem and demonstrate the concepts of polymorphism and inheritance
- The students will be able to demonstrate programs based on interfaces and threads and explain the benefits of JAVA's Exceptional handling mechanism compared to other Programming Language
- Write, compile, execute Java programs that include GUIs and event driven programming and also programs based on files

Course Contents

| Contents | Hours |
| :--- | :---: | :---: |
| Unit - 1 | |
| Fundamentals of Object Oriented Programming: Introduction, Object Oriented Paradigm, Basic
 Concepts of OOP, Benefits and Applications of OOP.
 Introduction to Java: Java Features, Java Environment, Simple Java Program, Java Program
 Structure, Java Tokens, Java Statements, Java Virtual Machine.
 Java Programming Basics: Constants, Variables, Data Types, Declaration of variables, Giving
 values to the variable, Scope of variables, Symbolic constants, Type casting. | |
| Operators and Expressions: Arithmetic Operators, Relational Operators, Logical Operators, | |
| Assignment Operator, Increment and Decrement Operators, Conditional Operator, Special Operators, | |
| Mathematical functions. | |
| Using I/O: Byte streams and character streams, predefined streams, reading console input, reading | |
| characters, strings, writing console output. | |
| Decision Making \& Branching: Simple if statement, if..else statement, nesting of if..else statement, | |
| the else..if ladder, the Switch statement. | |

Department of Computer Science

Decision making \& Looping -The while statement, the do statement, the for statement . Jumps in loops, Labelled loops.

Class \& Objects - Class Fundamentals, Declaring Objects, Assigning Object Reference Variables, Introducing Methods, Constructors, The 'this' keyword, Overloading Methods, Using Objects as Parameters, Returning Objects, Recursion, Understanding ‘static’, Introducing ‘final ‘, Using Command-Line Arguments, Varargs : Variable-Length Arguments

Arrays and Strings: One dimensional arrays, Creating an arrays, Two dimensional arrays , Strings, Vectors, Wrapper classes.

Unit - 3

Inheritance - Inheritance Basics, Using ‘super’, Creating Multilevel hierarchy, Method Overriding, Using Abstract Classes, Using final with Inheritance.

Packages \& Interfaces - Packages, Access protection in packages, Importing Packages, Interfaces. Exception Handling - Exception Handling Fundamentals - Exception Types, Uncaught Exceptions, Using try and catch, Multiple catch clauses, Nested try statements, throw, throws, finally, Java's builtin Exceptions

Unit -4	
Multithreaded Programming- Introduction, Creating threads, Extending the thread class, stopping \&	
blocking thread, Life cycle of a thread, Using thread methods, Implementing the runnable interface.	
Event and GUI programming: The Applet Class, Types of Applets, Applet Basics, Applet	
Architecture, An Applet Skeleton, Simple Applet Display Methods, Requesting Repaint, The HTML	
APPLET tag. Event Handling - The delegation event model, Event Classes -ActionEvent, KeyEvent	
\& MouseEvent Classes, Event Listener Interfaces -ActionListener, KeyListener \& MouseListener	10

Introducing swing - two key swing features, components and containers, the swing packages, a simple swing application, event handling. Exploring Swing- Jlabel, JTextField, JButton, Checkboxes Radio buttons, Jlist , JComboBox.

Department of Computer Science

Text Books :

1. E Balagurusamy, Programming with Java - A Primer, Fourth Edition, Tata McGraw Hill Education Private Limited.
2. Herbert Schildt, Java : The Complete Reference, Seventh Edition, McGraw Hill Publication.

Reference Books:

1. Herbert Schildt, Java 2 - The Complete Reference, Fifth Edition, McGraw Hill publication.
2. Cay S. Horstmann, Core Java Volume I -Fundamentals, Prentice Hall.
3. Somashekara, M.T., Guru, D.S., Manjunatha, K.S, Object Oriented Programming with Java, EEE Edition, PHI.

Course Title: Discrete Mathematical Structures

Course Code: CAC06	Course Title: Discrete Mathematical Structures
Course Credits: 03	Hours/Week: 03
Total Contact Hours: 42	Formative Assessment Marks: 40
Exam Marks: 60	Exam Duration: 03 Hours

Course Outcomes (COs):

After completing this course satisfactorily, a student will be able to:

- To understand the basic concepts of Mathematical reasoning, set and functions.
- To understand various counting techniques.
- Understand the concepts of various types of relations, partial ordering and equivalence relations.
- To understand the concept of probability and mathematical induction.
- Familiarize the fundamental concepts of graph theory and shortest path algorithm.
- To understand the concept of binary tree representation.

Course Contents

| Contents | Hours |
| :--- | :---: | :---: |
| Unit - 1 | |
| Mathematical logic: Introduction, statements, Connectives, negation, conjunction, disjunction,
 statement formulas and truth tables, conditional and bi Conditional statements, tautology,
 contradiction, equivalence of formulas, duality law, Predicates and Quantifiers, arguments, joint
 Daniel
 Sets: Definition, notation, inclusion and equality of sets, the power set, Operations on sets,Venn
 diagram, ordered pairs, and n-tuples, Cartesian product,
 Relations: Introduction, properties of a binary relation in a set, Relation matrix and graph of a relation,
 equivalence relations, compatibility relations, composition of Binary relation | 12 |
| Unit - 2 | 10 |
| Partial Ordering: Definition, lexicographic ordering, Partially ordered set, Hasse diagram, well-
 ordered set
 Functions: Definition and introduction, types of functions, composition of functions, inverse
 functions
 Counting: Basics of counting, Pigeonhole principle, Permutation and combination, Generalized
 Permutations and Combinations, generating permutation and combination, inclusion and exclusion | |

Department of Computer Science

Unit - 3	
Discrete Probability: Introduction, finite probability, probabilities of complements and unions of events, probability theory, conditional probability, independence, random variables, Bayes' theorem, expected value and variance, independent random variable. Mathematical Induction: Mathematical Induction, principle of mathematical induction, proving inequalities, strong induction and well ordering Number Theory: Division algorithm, Modular arithmetic, primes and greatest common divisors, least common multiple, the Euclidean algorithm	
Unit - 4	
Graphs: Graphs and Graph models, Graph Terminology and Special Types of Graphs, Representing	
Graphs and Graph Isomorphism, Connectivity, Euler and Hamilton Paths, Shortest-Path Problems,	
Planar Graphs, Graph Coloring.	
Trees: Directed tree, leaf node, branch node, ordered tree, degree of a node, forest, descendent, m-ary	
tree, conversion of directed tree into a binary tree.	10

Text Books:

1. J.P. Trembley and R. Manobar, Discrete Mathematical Structures, McGraw Hill Education Private Limited, New Delhi,
2. Kenneth H. Rosen, Discrete Mathematics and Its Applications, Seventh Edition, 2012.
3. Bernard Kolman, Robert C, Busby, Sharon Ross, Discrete Mathematical Structure, 2003.

Reference Books:

1. D C Sanchethi and V K Kapoor, Business Mathematics, Eleventh Revised Edition, Sulthan Chand \& Sons Educational publishers, New Delhi,
2. Narsingh Deo, Graph Theory with Applications to Engg and Comp. Sci, PHI, 1986.
3. Ralph P. Grimaldi, B. V. Ramatta, Discrete and Combinatorial Mathematics, $5{ }^{\text {th }}$ Edition, Pearson, Education
4. K Chandrashekhara Rao, Discrete Mathematics, Narosa Publishing House, New Delhi

Course Title: Data Structures Lab

Course Code: CAC04P	Course Title: Data Structures Lab
Course Credits: 02	Hours/Week: 04
Total Contact Hours: 52	Formative Assessment Marks: 20
Exam Marks: 30	Exam Duration: 03 Hours

Programming Lab

Part A:

1. Program to sort the given list using selection sort technique.
2. Program to sort the given list using insertion sort technique.
3. Program to sort the given list using bubble sort technique.
4. Program to search an element using linear search technique.
5. Program to search an element using binary search technique.
6. Program to implement Stack operations using arrays.
7. Program to implement Queue operations using arrays
8. Program to implement dynamic array. Find smallest and largest element.

Part B:

1. Program to sort the given list using merge sort technique.
2. Program to implement circular queue using array
3. Program to search an element using recursive binary search technique
4. Program to implement Stack operations using linked list.
5. Program to implement Queue operations using linked list.
6. Program to evaluate postfix expression.
7. Program to perform insert node at the end, delete a given node and display contents of singly linked list.
8. Menu driven program for the following operations on Binary Search Tree (BST) of Integers
(a) Create a BST of N Integers
(b) Traverse the BST in Inorder, Preorder and Post Order

Evaluation Scheme for Lab Examination

Assessment Criteria		Marks
Program - 1 from Part A	Writing the Program	05
	Execution and Formatting	05
Program -2 from Part B	Writing the Program	07
	Execution and Formatting	08
Practical Record	Total	05

Course Code: CAC05P	Course Title: JAVA Lab
Course Credits: 02	Hours/Week: 04
Total Contact Hours: 52	Formative Assessment Marks: 20
Exam Marks: 30	Exam Duration: 04 Hours

Programming Lab

PART A

1.Program to accept student name and marks in three subjects. Find the total marks, average and grade (depending on the average marks).
2.A menu driven program to input two integers \& an operator to perform basic arithmetic operations (+,-,* and /) using switch case structure.
3. Program, which reads two numbers having same number of digits. The program outputs the sum of product of corresponding digits.(Hint Input 327 and 539 output $3 \times 5+2 \times 3+7 \times 9=84$)
4. Program to input Start and End limits and print all Fibonacci numbers between the ranges.(Use for loop) 5.Define a class named Pay with data members String name, double salary, double da, double hra, double pf, double grossSal, double netSal and methods: Pay(String n, double s) - Parameterized constructor to initialize the data members, void calculate() - to calculate the following salary components, and void display() - to display the employee name, salary and all salary components.

```
Dearness Allowance \(=15 \%\) of salary
House Rent Allowance \(=10 \%\) of salary
Provident Fund \(=12 \%\) of salary
Gross Salary \(=\) Salary + Dearness Allowance + House Rent Allowance
Net Salary = Gross Salary - Provident Fund
```

Write a main method to create object of the class and call the methods to compute and display the salary details.
6.Program to create a class DISTANCE with the data members feet and inches. Use a constructor to read the data and a member function Sum () to add two distances by using objects as method arguments and show the result. (Input and output of inches should be less than 12.)
7. Program to check whether the given array is Mirror Inverse or not.
8. Program to create a class "Matrix" that would contain integer values having varied numbers of columns for each row. Print row-wise sum.
9. Program to extract portion of character string and print extracted string. Assume that ' n ' characters extracted starting from mth character position.
10. Program to add, remove and display elements of a Vector

Department of Computer Science

PART-B

1. Create a class named 'Member' having data members: Name, Age, PhoneNumber, Place and Salary. It also has a method named 'printSalary' which prints the salary of the members. Two classes 'Employee' and 'Manager' inherit the 'Member' class. The 'Employee' and 'Manager' classes have data members 'specialization' and 'department' respectively. Now, assign name, age, phone number, address and salary to an employee and a manager by making an object of both of these classes and print the same.
2. Program to implement the following class hierarchy:

> Student: id, name
> StudentExam (derived from Student): Marks of 3subjects, total marks
> StudentResult (derived from StudentExam) : percentage, grade

Define appropriate methods to accept and calculate grade based on existing criteria and display details of N students
3. Program to calculate marks of a student using multiple inheritance implemented through interface. Class Student with data members rollNo, name, String cls and methods to set and put data. Create another class test extended by class Student with data members mark1, mark2, mark3 and methods to set and put data. Create interface sports with members sportsWt $=5$ and putWt(). Now let the class results extends class test and implements interface sports. Write a Java program to read required data and display details in a neat format.
4. Program to create an abstract class named shape that contains two integers and an empty method named print Area(). Provide three classes named Rectangle, Triangle and Ellipse such that each one of the classes extends the class shape. Each one of the class contains only the method print Area() that print the area of the given shape.
5. Create a package to convert temperature in centigrade into Fahrenheit, and one more package to calculate the simple Interest. Implement both package in the Main () by accepting the required inputs for each application.
6. Program that implements a multi-threaded program has three threads. First thread generates a random integer every second, and if the value is even, second thread computes the square of the number and prints. If the value is odd the third thread will print the value of cube of the number.
7. Program to create a window when we press M or m the window displays Good Morning, A or a the window displays Good After Noon E or e the window displays Good Evening, N or n the window displays Good Night.
8. Program that creates a user interface to perform basic integer operations. The user enters two numbers in the TextFields - Num1 and Num2. The result of operations must be displayed in the Result TextField when the " $=$ " button is clicked. Appropriate Exception handling message to be displayed in the Result TextFieldwhen Num1 or Num2 is not an integer or Num2 is Zero when division operation is applied.
9. Program to accept the employee name, employee number and basic salary as inputs and find the gross and net salaries on the following conditions.

if Salary $<=20000$	D.A is 40% Salary;
P.F 12% of Gross; A is 10% Salary.	
PT is Rs .100	
if Salary >20000	D.A is 50% of salary; H.R.A 15% of salary

Department of Computer Science

```
P.F 12% of Gross ; PT is Rs.150
Gross = basic salary +D.A +HRA and Net = Gross -PT -PF
```

10. Using the swing components, design the frame for shopping a book that accepts book code, book name, and Price. Calculate the discount on code as follows.

Code	Discount rate
101	15%
102	20%
103	25%
Any other	5%

Find the discount amount and Net bill amount. Display the bill.

Evaluation Scheme for Lab Examination

Assessment Criteria		Marks
Program - 1 from Part A	Writing the Program	05
	Execution and Formatting	05
Program -2 from Part B	Writing the Program	07
	Execution and Formatting	08
Practical Record	Total	05

Course Code: CACOE2	Course Title: Web Designing
Course Credits: 03	Hours/Week: 03
Total Contact Hours: 42	Formative Assessment Marks: 40
Exam Marks: 60	Exam Duration: 03 Hours

Course Outcomes (COs):

After completing this course satisfactorily, a student will be able to:

- Understand various Internet related terminologies
- Explain features and evolution of Internet
- Explain the use of search engines
- Know the use of different tags available in HTML
- Design web pages using HTML5, CSS3, XML and XHTML
- Implement websites using linked web pages.

Course Contents

Contents	Hours
Unit - 1	
The Internet: Introduction, Evolution, basic internet terms, Getting connect to internet, Internet applications, Data over the internet. Internet tools: Web browser, Web browser features, Internet Explorer environment, Electronic mail, Email address structure, checking email, sending email, email attachment, How email works, advantages and disadvantages of email. Search Engines: Searching an internet, refining the search, Instant messaging, Features of messengers.	
	12
Overview of HTML5 -Exploring new features of HTML5, Structuring an HTML Document, Creating an saving HTML document, Viewing an HTML document.	
Fundamentals of HTML-Understanding Elements, Root elements, Metadata elements, Style	
element, Section element, Header and Footer element, Address element, Basic HTML data types,	
Data types defined by RFC and IANA Documentation.	
Working with Text: Formatting Text with HTML Elements, Defining MARK element, Defining	
STRONG element, Defining CODE element, Defining SMALL element.	

Unit - 3

Working with Links and URLs- Exploring the Hyperlinks, Exploring the URL, Exploring Link Relations.

Creating Tables-Understanding Tables, Describing the table element.
Working with Images, Colors and Canvas - Inserting images in a web page, Exploring Colors, Introducing Canvas
Working with Forms: Exploring Form element, Exploring types of the INPUT element, Exploring the BUTTON element, Exploring the Multiple-Choice elements, Exploring TEXTAREA and LABEL elements.

Working with Frames: $<$ FRAMESET $>,<$ FRAME $>$ tag with attributes.

	Unit - 4
Overview of CSS3- Understanding the syntax of CSS, Exploring CSS Selectors, Inserting CSS in an	
HTML document.	
Background and Color Gradients in CSS: Exploring Background of a Web Page, Exploring Color	
Properties, Exploring Gradient Properties, Exploring Font properties.	10
Working with Basics of XML-Exploring XML, Comparing XML with HTML, Describing the	
Structure of an XML document.	

Text Books

1. ITL Education Solution Limited, Introduction to Information Technology, Pearson Education, 2012
2. DT Editorial Services, HTML 5 Black Book (Covers CSS3, JavaScript, XML, XHTML, AJAX, PHP, jQuery), Second Edition, Dreamtech Publisher, 2016

Reference Books

1. Laura Lemay \& Rafe Colburn, Mastering Html, CSS \& Javascript, Web Publishing, 2016
2. Firuza Aibara, HTML 5 for Beginners, 2012
3. Glenn Johnson, Training Guide - Programming in HTML5 with JavaScript and CSS3 (Microsoft Press Training Guide), 2013

Scheme of Assessment for Theory Examination

Duration: 3 Hrs
Max Marks: 60

Open Electives in Computer Science

(For Students studying Core Courses other than Computer Science/ Computer Applications)

Sl. No	Open Electives in Computer Science
1	C Programming Concepts
2	Office Automation
3	Multimedia Processing
4	Python Programming Concepts
5	R Programming
6	E-Content Development
7	E-Commerce
8	Web Designing
9	Computer Animation
10	Accounting Package

