SRI DHARMASTHALA MANJUNATHESHWARA COLLEGE, UJIRE-574240

(Autonomous)

(Re-Accredited by NAAC at 'A' Grade with CGPA 3.61 out of 4)

DEPARTMENT OF COMPUTET SCIENCE

Syllabus of

BACHELOR OF VOCATIONAL

[B VOC] PROGRAMME

ON APP. & SOFTWEAR DEVELOPMENT

> (SEMESTER SYSTEM) 2019- 2020 onwards.

Approved by the BOS meeting held on 04-10-2019 Approved by the Academic Council meeting, held on 10-10-2019

Bachelor of Programme

UGC Introduction to B.Vocational Courses

It has been a long felt necessity to align higher education with the emerging needs of the economy to ensure that the graduates of higher education system have adequate knowledge and skills for employment and entrepreneurship. The higher education system has to incorporate the requirements of various industries in its curriculum, in an innovative and flexible manner while developing a holistic and well-groomed graduate. Ministry of HRD, Government of India had issued an Executive Order in September 2011 for National Vocational Education Qualification Framework (NVEQF). Subsequently, Ministry of Finance, in pursuance of the decision of Cabinet Committee on Skill Development in its meeting held on 19December 2013, has issued a notification for National Skills Qualifications Framework (NSQF), which supersedes NVEQF. Under the National Skills Development Corporation, many Sector Skill Councils representing respective industries have/are being established. One of the mandates of Sector Skill Councils is to develop National Occupational Standards (NOSs) for various job roles in their respective industries. It is important to embed the competencies required for specific job roles in the higher education system for creating employable graduates. The University Grants Commission (UGC) has launched a scheme on skills development based higher education as part of college/university education, leading to Bachelor of Vocation (B.Voc.) Degree with multiple exits such as Diploma/Advanced Diploma under the NSQF. The B.Voc. Programmeis focused on universities and colleges providing undergraduate studies, which would also incorporate specific job roles and their NOSs along with broad based general education. This would enable the graduates completing B.Voc. To make a meaningful participation in accelerating India's economy by gaining appropriate employment, becoming entrepreneurs and creating appropriate knowledge.

Faculty of Bachelor of Vocational Program: BVOC006

Program Specific Outcomes: Application and Software Development (F3)

PSO1: Design a basic web site using HTML and CSS to demonstrate responsive web design.

PSO2: Demonstrate skills using word processor and spreadsheet presentation and Implement Static or dynamic web pages with validation using JavaScript objects by applying different event handling mechanism

- PSO3: Describe XML using the user defined tags, DTD, Namespaces and Schemas with simple programs and discuss the concepts of PHP with associated programs.
- PSO4: Understand and identify the models, components of a computer along with its connections, operating system concepts along with internet operation.
- PSO5: Exhibit skills that can meet local, national and global work standards and discuss different ways to access the database through the web using examples and various server based software using different technologies.

B.VOC Application and Software Development

Introduction to App & Software Development

Application and Software development is the discipline of creating high-quality software systems in a systematic, controlled and efficient manner. It involves the application of engineering concepts, techniques, and methods to the design, development, deployment and maintenance of software systems. An application and software development program will develop professionals who have a mastery of principles, theory, practices, and processes necessary to produce quality software systems.

The Application and Software development education in SDM will focus on imparting the knowledge and training, which should enable students to harmonize theory with practice, concept with application, and problem with solution. It will prepare them to apply ably engineering principles, practices, and processes to design, develop, deploy, and maintain software systems. The program will lead to development of student's professional and interpersonal skills. It will help students to enhance their ability in oral and written communication, and their adaptability to team environments. The program will inculcate among students a strong sense of civic, professional and ethical responsibility. The program will also strive to develop a capacity for innovation and a passion for lifelong learning.

Theory Internal Assessment Pattern for Application and Software Development.

THEORY INTERNAL ASSESSMENT PATTERN					
SEMESTER INTERNALS	TIME	MARKS	MODE OF CONDUCT		

INTERNAL-I	1 HOUR	30	OFFLINE
INTERNAL-II	1 HOUR	30	ONLINE / MCQ
TOTAL		60	60 Marks converted to 15 and +5(Assignment 2.5 and Attendance 2.5)
FINAL TOTAL		20 MARKS	

Practical Internal and External Assessment Pattern for Application and Software Development.

PRACT	PRACTICAL INTERNAL ASSESSMENT PATTERN					
SEMESTER INTERNALS	TIME	MARKS	MODE OF CONDUCT			
INTERNAL-I	1 HOUR	30	20 WRITTEN + 5 ASSIGNMENT +5 RECORD /ATTENDANCE			
INTERNAL-II	2 HOURS	50	30 WRITTEN + 10 ASSIGNMENT +10 RECORD /ATTENDANCE			
TOTAL		80 80 Converted into 20 and +10 for Assignment/Record/Attendance				
FINAL TOTAL		30 MARKS				

PRACTICAL EXTERNAL ASSESSMENT PATTERN						
SEMESTER END EXAM	TIME	MARKS	MODE OF CONDUCT			
EXTERNAL EXAM	3 HOURS	120	Write Up: PART-A(20) +PART-B(40) = 60 Part-A: 1 Question(20Marks) Part-B: 2 Questions(20+20 Marks) Execution: PART-A(10) + PART-B(20) = 30 Part-A: 1 Question(10 Marks) Part-B: 2 Questions(10+10 Marks)			

	Viva + Record: $10 + 20 = 30$	

Final Exam Question Paper Pattern

FIN	FINAL EXAM QUESTION PAPER PATTERN				
OPTIONS	NUMBER OF QUESTIONS IN EACH PART	HEADING OF EACH PART	MARKS		
PART -A	12	Answer any TEN Questions from the followingeach carries 2 Marks (2*10=20)	2 * 10 = 20		
PART-B Unit-I (2 Question) Unit-II (2 Question) Unit-III (2 Question) Unit-IV (2 Question)	8	Answer any One full question from each unit. Example: Unit-I (5 +5 +5) 1.a, 1.b, 1.c OR 2.a, 2.b, 2.c	4 * 15 = 60		
	TOTAL		80		

Project Evaluation Scheme

SL.	NO	PARTICULARS	MARK
		Report Evaluation: 220	
	1.1	Innovativeness and utility of the project for Industry/Academic or society(utility)	20
	1.2	Related studies about the project(Adequecy)	20
		Project plan & implementation- Target achieved / Output delivered(effectiveness)	
1		1.3.1 Analysis	30
1	1.3	1.3.2 Design	40
	1.1.1.1.1.1.1	1.3.3 Implementation	40
		1.3.4 Testing	40
		Other Mandatory documents and information(certificates, contents, tables, figure,	20
	1.4	bibliography etc.)	20
		Viva-Voice: 180	
2	2.1	Live Demonstration (Software execution) or Dry runs(Presentation of authentic scre or captured videos may be used to walk through complete scenarious)- consistenc completeness	
	2.2	Question and Answer (Oral only or Oral and written)	40
	2.3	Soft Skills - Communication skills, Team spirit(if any for working in group)	20
	1012	TOTAL MARKS	450

Subject Code	Subject Title		Marks	
		IA	Term End	Total
			Exam	
BVOCKAN101	Kannada	20	80	100
BVOCENG101	English	20	80	100
BVOCEF101	Elective	10	40	50
	Introduction to Python	20	80	100
BVOCAS101	Programming			
BVOCAS102	Internet Programming	20	80	100
	Introduction to Python	30	120	150
BVOCASP103	Programming Practical			
BVOCASP104	Internet Programming Practical	30	120	150
	Project-IBasic Computer Skills	30	120	150
BVOCASP105	Project			
	Grand Total	180	720	900

I-SEMESTER

II-SEMESTER

Subject Code	Subject Title		Marks	
		IA	Term End	Total
			Exam	
BVOCKAN151	Kannada	20	80	100
BVOCENG151	English	20	80	100
BVOCEF151	Elective	10	40	50
BVOCAS151	Database Management System	20	80	100
	Introduction to Web	20	80	100
BVOCAS152	Programming			
BVOCASP153	DBMS-Lab	30	120	150
BVOCASP154	Web Programming Lab	30	120	150
	Project-II - Computer	30	120	150
BVOCASP155	Programming Project			
	Grand Total	180	720	900

Subject Code	Subject Title		Marks	
		IA	Term End	Total
			Exam	
BVOCKAN201	Kannada	20	80	100
BVOCENG201	English	20	80	100
BVOCEF201	Elective	10	40	50
BVOCAS201	Python for Data Science	20	80	100
	Object Oriented Programming	20	80	100
BVOCAS202	with Java			
BVOCASP203	Python for Data Science-Lab	30	120	150
BVOCASP204	Java Programming -Lab	30	120	150
	Project-III - Kotlin Programming	30	120	150
BVOCASP205	Project			
	Grand Total	180	720	900

III-SEMESTER

IV-SEMESTER

Subject Code	Subject Title		Marks	
		IA	Term End	Total
			Exam	
BVOCKAN251	Kannada	20	80	100
BVOCENG251	English	20	80	100
BVOCEF251	Elective	10	40	50
BVOCAS251	Mobile Application Development	20	80	100
BVOCAS252	Introduction To Go Programming	20	80	100
	Mobile Application Development	30	120	150
BVOCASP253	Lab			
	Introduction To Go Programming-	30	120	150
BVOCASP254	Lab			
	Project-IV - Data Structure and	30	120	150
BVOCASP255	C++ Project			
	Grand Total	180	720	900

Subject Code	Subject Title		Marks	
		IA	Term End	Total
			Exam	
BVOCAS301	ASP .NET CORE Programming	20	80	100
BVOCAS302	Machine Learning With Python	20	80	100
BVOCAS303	Unix And Shell Programming	20	80	100
BVOCAS304	DevOps For Developers	20	80	100
	Machine Learning With Python-	30	120	150
BVOCASP305	Lab			
BVOCASP306	Unix And Shell Programming-Lab	30	120	150
	Project-V - DevOps For Developers	30	120	150
BVOCASP307	-Project			
	Grand Total	170	680	850

V-SEMESTER

VI-SEMESTER

Subject Code	Subject Title		Marks		
		IA	IA Term End To		
			Exam		
BVOCAS351	Internet Of Things	20	80	100	
BVOCAS352	Computer Networks	20	80	100	
BVOCAS353	Ethical Hacking Techniques	20	80	100	
BVOCAS354	NoSQL Database	20	80	100	
BVOCASP355	Project Work	50	400	450	
	Grand Total	130	720	850	

	OFMENDER	т	
	SEMESTER		
Subject Code	BVOCAS101	IA Marks 2	20
Number of Lecture Hours/Week	03	Exam Marks	30
Total Number of Lecture Hours	36	Exam Hours)3
	CREDITS – (03	
Course objectives: This course wil	l enable students t	0	
CO1: Learn Syntax and Semant	ics and create Fun	ctions in Python.	
CO2: Handle Strings and Files i	n Python.		
CO3: Understand Lists, Diction	aries and Regular	expressions in Python.	
CO4: Implement Object Oriente	ed Programming co	oncepts in Python.	
Module – 1			Teachir
			g Hour
Introduction to Computers and P	roblem Solving S	Strategies	9 Hour
Introduction, History, Characterist	tics and Classific	cation of Computers, Bas	ic
Applications, Components and Fu	inctions, Concept	of Hardware and Softwar	e,
Central Processing Unit (CPU): B	Basic Architecture	, Input and Output Device	s,
Computer Memory, Classification	of Computer Softw	ware, Representation of Dat	a:
Bits and Bytes, Problem Solving S	Strategies, Program	m Design Tools: Algorithm	s,
Flowcharts, Pseudo codes, Types of	f Errors, Testing a	nd Debugging.	
Module – 2			
Basics of Python Programming			9 Hours
Features and History of Python, The	e Future of Pythor	n, Writing and Executing Fir	st
Python Program, Literal Constants	, Variables and I	dentifiers, Data Types, Inp	ut
Operation, Comments, Reserved W	Vords, Indentation	, Operators and Expression	s,
Operation on Strings, Other Data Ty	ypes.		
Decision Control Statements			
Decision Control Statements			
	onal Statements,	Loops/ Iterative Statement	.5,
Introduction, Selection or Conditi Nested Loops	onal Statements,	Loops/ Iterative Statement	.5,
Introduction, Selection or Conditi	onal Statements,	Loops/ Iterative Statement	
Introduction, Selection or Conditi Nested Loops	onal Statements,	Loops/ Iterative Statement	9 Hour
Introduction, Selection or Conditi Nested Loops Module – 3		-	9 Hour

Library Modules.

Module –4

Strings:Concatenating, Appending and Multiplying, Built in String Functions, **9 Hours** Slice Operations, Regular Expressions.

Data Structures: Sequence, Lists, Tuples, Sets and Dictionary

Course outcomes: The students should be able to:

CO1: Examine python syntax and semantics and be fluent in the use of python flow control and functions.

CO2: Demonstrate proficiency in handling strings and file systems.

CO3: Create, run and manipulate python programs using core data structures like lists, dictionaries and use regular expressions.

CO4: Interpret the concepts of object-oriented programming as used inpython

CO5: Implement exemplary applications related to network programming, web services and databases inpython

Question paper pattern:

- The question paper will have two parts, PART-A (20 Marks) and PART-B (80 Marks)
- PART-A will have 12 questions covering all four modules the students must answer 10 questions
- PART-B will have total eight questions covering all four modules
- In Part-B there will be 2 full questions (with a maximum of three sub questions) from each module
- The students will have to answer 4 full questions, selecting one full question from each module

Text Books:

- 1. Reema Thareja, Python Programming using Problem Solving Approach, OXFORD University Press.
- 2. Allen B. Downey, **"Think Python: How to Think Like a Computer Scientist"**, 2nd Edition, Green Tea Press, 2015.

Reference Books:

1. Joel Grus , Data Science from Scratch First Principles with Python, O'Reilly Media, 2016

2.T.R.Padmanabhan, Programming with Python, Springer Publications, 2016

INTRODUCTION	N TO INTERN	ET PROGRAMMI	NG	
	SEMESTER	2 – I		
Subject Code	BVOCAS102	IA Marks	20	
Number of Lecture Hours/Week03Exam Marks80				
Total Number of Lecture Hours	36	Exam Hours	03	
	CREDITS –	03		
Course objectives: This course wil	l enable students	to		
CO1: Illustrate the Semantic Str	ructure of HTML	and CSS		
CO2: Compose forms and table	s using HTML an	d CSS		
CO3: Examine JavaScript frame	ework.			
Module – 1			Teachin	
			g Hours	
Introduction to Fundamentals of	Web		9Hours	
Internet, WWW, Web Browsers and Web Servers; URLs; MIME; HTTP; Security;				
The web Programmers Toolbox, XHTML: Origin and Evolution of HTML and				
XHTML; Basic Syntax; Standard	1 XHTML Docu	ument Structure; Basic	Text	
Markup.				
Module – 2				
Introduction to HTML: What is I	HTML and When	re did it come from? H	ITML 9 Hours	
Syntax, Structure of HTML Documents, Quick Tour of HTML Elements,				
Semantics Mark-Up, HTML5 Sema	ntic Structure Ele	ements.		
Module – 3			I	
HTML Tables and Forms, Introduc	ing Tables, Stylin	ng Tables, Introducing F	Forms, 9 Hours	
Forms Control Elements, Table	s and Forms A	Accessibility Micro for	rmats,	
Advanced HTML Graphics-HTML	canvas, HTML	SVG, HTML media, H	ITML	
Video, HTML Audio, HTML YouT	`ube.			
Module –4				
CSS: What is CSS, CSS Syntax, Lo	ocation of Styles,	Selectors, The Cascade:	How 9 Hours	
Styles Interact, The Box Model, C	SS Text Styling,	CSS Borders, CSS Ma	rgins,	
CSS Padding, CSS Height Width,	CSS Outline, CS	S Text, CSS Responsive	e Font	
Size, CSS Font Variant, CSS Lin	ks, Advanced Li	inks Buttons, CSS lists,	, CSS	
Display, CSS Floats, CSS Navigation	on, CSS Drop Do	wn,		
JavaScript: Client Side Scripting,	What is JavaS	cript and What can it	do?,	

JavaScript Design Principals, Where does Java Script Go, Syntax, Java Script Objects, The Document Object Model(DOM), Java Script Events, Forms, Java Script Statement, JS Syntax, JS Comments, JS Variables, JS Operators, JS Arithmetic, JS Data Types, JS Functions, JS Objects, JS Events, JS Strings, JS Events, JS String Methods, JS Array Methods, JS Array Sort, JS Date get and set methods, JS Loop For, JS Loop While

Course outcomes: The students should be able to:

CO1: Adapt html and css syntax and semantics to build webpages.

CO2: Construct and visually format tables and forms using html andcss

CO3:Developclient-sidescriptsusingJavaScriptandserver-sidescriptsusingphptogenerateand display the contents dynamically.

CO4: Appraise the principles of object oriented development-using php

CO5: Inspect JavaScript frameworks like jQuery and backbone which facilitates developer to focus on core features

Question paper pattern:

- The question paper will have two parts, PART-A (20 Marks) and PART-B (80 Marks)
- PART-A will have 12 questions covering all four modules the students must answer 10 questions
- PART-B will have total eight questions covering all four modules
- In Part-B there will be 2 full questions (with a maximum of three sub questions) from each module
- The students will have to answer 4 full questions, selecting one full question from each module

Text Books:

- Programming the World Wide Web-Robert W.Sebesta, 4th Edition, Pearson Education, 2008.
- Programming the World Wide Web, 7th edition, Robert W.Sebesta , Pearson Education, ISBN-9789332518827

Reference Books:

- 1. Internet and World Wide Web -How to program by Dietel and Nieto Pearson Education
- 2. The complete Reference Java 2 Third Edition by Patrick Naughton and Herbert Schildt.
- 3. Java Server Pages by Hans Bergstan.

	SEMESTER –	·I			
Laboratory CodeBVOCASP103IA Marks30					
Number of Lecture Hours/Week	06	Exam Marks	120		
Total Number of Lecture Hours	72	Exam Hours	03		
	CREDITS – 0	6			
Course objectives: This course wil	l enable students to)			
• Basics of Python programm	ing				
• Decision Making and Functi	ions in Python				
• Install and run the Python in	terpreter				
• Create and execute Python p	programs				
• Understand the concepts of t	file I/O				
• Be able to read data from a t	ext file using Pyth	on			
Laboratory Experiments:					
1. A) Write a program to check	whether the giver	year is leap year or	not.		
B) Write a program to determ	mine whether the e	ntered character is V	owel or not		
2. A)Write a program to read a	number and calcu	late the sum of its dig	gits		
(E.g. Input number=	123 sum=6).				
B) Write a program to calcu	late GCD of two m	umbers.			
3. Write a program to perform	Addition, Subtract	ion, Multiplication, a	nd Division and		
modulo operations on two ir	nteger numbers (Re	ead the input from key	yboard).		
4. Write a program to read three	e integer numbers	from keyboard and fi	ind the largest		
among three numbers.					
5. Write a python program to f	ind a key element u	using Binary Search a	algorithm		
6. Develop a program to find a	reverse of a positi	ve integer and check	for palindrome or		
not. Display appropriate me	ssage.				
7. Write a program to count the	e number of digits,	uppercase characters	, lowercase		
characters and special charac	cters in a given stri	ng.			
8. Write a program to remove a	all duplicates from	the list			
9. Write a program that creates	a list of 10 randor	n integers. Then creat	te ODD list and		
EVEN list that has all odd an	nd even values in t	he list respectively.			

four subjects. Create another dictionary from this dictionary that has name of the

student and their total marks. Find out topper and his/her score.

Course outcomes: The students should be able to:

CO1: Be skilled in the basics of python programming

CO2: Be skilled in decision making and functions in python

CO3: Install and run the python interpreter

CO4: Create and execute python programs

CO5: Understand the concepts of file i/o

CO6: Be able to read data from a text file using python

Conduction of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- Students are allowed to pick three experiments from the lot.
- Strictly follow the instructions as printed on the cover page of answer script

Change of experiment is allowed only once and marks allotted to the procedure part to be made zero.

INTRODUCTION TO INTERNET PROGRAMMING LABORATORY					
SEMESTER – I					
Laboratory CodeBVOCASP104IA Marks30					
Number of Lecture Hours/Week	06	Exam Marks	120		
Total Number of Lecture Hours	72	Exam Hours	03		
CREDITS – 06					

Course objectives: This course will enable students to

- To acquire knowledge and Skills for creation of Web Site considering both client- and server-side Programming.
- To create Web application using tools and techniques used in industry.
- To be well versed with XML and web services Technologies.
- To be familiarized with open source Frameworks for web development.

Laboratory Experiments:

 Design a page having suitable background colour and text colour with title "My First Web Page" using all the attributes of the Font tag.

Create a HTML document giving details of your [Name, Age], [Address, Phone] and [Register Number, Class] aligned in proper order using alignment attributes of

Paragraph tag. 3. Write HTML code to design a page containing some text in a paragraph by giving suitable heading style. 4. Create a page to show different character formatting (B, I, U, SUB, SUP) tags. 5. Write HTML code to create a Web Page that contains an Image at its centre 6. Create a web page with an appropriate image towards the left hand side of the page, when user clicks on the image another web page should open. 7. Create web Pages using Anchor tag with its attributes for external links. 8. Create a web page for internal links; when the user clicks on different links on the web page it should go to the appropriate locations/sections in the same page. 9. Write a HTML code to create a web page with pink colour background and display moving message in red colour. 10. Create a web page, showing an ordered list of all First semester courses (Subjects). 11. Create a web page, showing an unordered list of names of all the B.Voc Programmers (Branches) in your institution. 12. Create a HTML document containing a nested list showing a content page of any book. 13. Create the following table in HTML with Dummy Data which contains Reg. Number, Student Name, Year/Semester and Date of Admission 14. Create a web page which divides the page in two equal frames and place the audio and video clips in frame-1 and frame-2 respectively 15. Create a web page which should generate following output which contains Frame-1, Frame-2 and frame-3 16. Create a web page using Embedded CSS and multimedia. Course outcomes: The students should be able to: CO1: Design a basic web site using html and css to demonstrate responsive web design. CO2: Implement static or dynamic web pages with validation using JavaScript objects by applying different event handling mechanism **Conduction of Practical Examination:** All laboratory experiments are to be included for practical examination. •

- Students are allowed to pick three experiments from the lot.
- Strictly follow the instructions as printed on the cover page of answer script

Change of experiment is allowed only once and marks allotted to the procedure part to be made zero.

BASIC COMPUTER SKILLSPROJECT					
SEMESTER – I					
Laboratory CodeBVOCASP105IA Marks30					
Number of Lecture Hours/Week	06	Exam Marks	120		
Total Number of Lecture Hours72Exam Hours03					
CREDITS – 06					

Course objectives: This course will enable students to

CO1: Will learn and understand the Basics of Computers and apply the application tools like word processor, spread sheet and presentation.

Laboratory Experiments:

Lab 1: Computer hardware and software: Understand and identify the models, components of a computer along with its connections, operating system concepts along with internet operation.

Identify and understand the models of Computers, Identify and understand front panel switches and back panel connections of a Computer system, Identify and understand the physical components of a Computer, Conduct computer system connection and understand the booting process, Study and Practice of Basic DOS Commands, Familiarization of GUI based Operating System Environment, Practice creating Icons and Folders, Creating/Opening of file, Editing and saving the document, Copy, Cut and Paste operations, built-in utilities of OS like – Text Editors, Paint, Calculator etc. ,Practice browsing of different sites using Search Engine, Practice Creating E-Mail accounts, Sending, Receiving of E-Mails.

- 1. Identify and understand the models of Computers, Identify and understand front panel switches and back panel connections of a Computer system, Identify and understand the physical components of a Computer.
- 2. Conduct computer system connection and understand the booting process.
- 3. Study and Practice of Basic DOS Commands.
- 4. Familiarization of GUI based Operating System Environment.
- Practice creating Icons and Folders, Creating/Opening of file, Editing and saving the document, Copy, Cut and Paste operations, built-in utilities of OS like – Text Editors, Paint, Calculator, etc.
- 6. Practice browsing of different sites using Search Engine.Practice Creating E-Mail accounts, Sending, Receiving of E-Mails

Lab 2:Demonstrate skills using word processor

Create a Business Letter and Personal Letter, Create a Company Letter head, and Create a Simple Newsletter with minimum three columns. Insert a Clip Art in the Newsletter, Create a Resume for a Job Application, Create the Cover Page of a Project Report (use Word Art, insert Picture Image), Prepare the class time table of your class.

- 1. Create a Business Letter and Personal Letter.
- 2. Create a Company Letter head.
- 3. Create a Simple Newsletter with minimum three columns. Insert a Clip Art in the Newsletter.
- 4. Create a Resume for a Job Application.
- Create the Cover Page of a Project Report (use Word Art, insert Picture Image). Prepare the class time table of your class.

Lab 3: Demonstrate skills using spreadsheet presentation

- 1. Create a worksheet with five columns. Enter ten records and find the sum of all columns using auto sum feature.
- 2. You have a monthly income of Rs.11000. Your monthly expenditures are: Rent- Rs 3500, Food- Rs. 1500, Electricity- Rs.110, Phone- Rs. 160, and Cable TV-Rs. 300. Prepare a worksheet with the Monthly Income, the Monthly Expenditures listed and summed, monthly savings amount (what's left over each month) calculated, and the amount saved per day (assuming 30 days in a month).
- Create a worksheet containing the Pay details (containing Basic pay, DA, HRA ,Other Allowance, Deductions- PF, PT, Insurance, Gross and Net salary) of the Employees using Formulas.
- 4. Create a Simple Bar Chart to highlight the sales of a company for three different periods.
- 5. Create a Pie Chart for a sample data and give legends.

Lab 4: Demonstrate skills using presentation

- Using presentation tool, Create a simple Presentation consisting of 4-5 slides about Input and Output Devices.
- 2. Create a presentation about a Book containing Title, Author, Publisher and Contents.

3. Create an automated (with timings & animation) Presentation with five slides about different Models of Computers. Use Presentation tool.

Course outcomes: The students should be able to:

CO1: Understand and identify the models, components of a computer along with its connections, operating system concepts along with internetoperation

CO2: Demonstrate skills using wordprocessor

CO3: Demonstrate skills using spreadsheetpresentation

CO4: Demonstrate skills usingpresentation

Conduction of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- Students are allowed to pick three experiments from the lot.
- Strictly follow the instructions as printed on the cover page of answer script

Change of experiment is allowed only once and marks allotted to the procedure part to be made zero.

References:

- Computer Fundamentals Concepts, Systems, Application, D.P.Nagapal, S.Chand Publication, RP-2014, ISBN: 81-219-2388-3
- <u>http://www.tutorialsforopenoffice.org/</u>
- http://www.libreoffice.org/get-help/documentation/

Software Tools:

• Any open source tool or equivalent proprietary tools.

INTRODUCTION TO V			KML, PHP
	SEMESTER -	- II	
Subject Code	BVOCAS151	IA Marks	20
Number of Lecture Hours/Week	03	Exam Marks	80
Total Number of Lecture Hours	36	Exam Hours	03
	CREDITS –	03	
Course objectives: This course wil	l enable students t	to	
CO1: To study the concepts of web	application develo	opment such as XHTMI	L, XML, PHP,
Java web software, and Database ac	ccess through JDB	C and PHP.	
Module – 1			Teachin
			g Hours
Introduction to XML: Introduct	ion to XML, How	w Can XML be used?,	XML 9Hours
Tree, XML Syntax Rules, XML E	Elements, XML A	ttributes, XML Names	paces,
Displaying XML,XML Parser, XM	IL DOM,XML ar	nd XQuery, XML and X	XPath,
XML, XLink and XPointer, XML	Validator, XML I	DTD, XML Schema, XM	ML on
the Server, AJAX Introduction.			
Module – 2			
Introduction to PHP: Introduction	n to PHP, PHP Ir	nstallation, PHP Syntax	, PHP 9 Hours
Comments, PHP Variables, PHP	echo and, print S	statements, PHP Data	Гуреs,
PHP Strings, PHP Numbers, PHP O	Constants, PHP O	perators, PHP ifelse	else if
Statements, PHP switch Statement,	PHP Loops, PHP	Functions, PHP Arrays	s, PHP
Global Variables –Super global.			
Module – 3			
PHP Forms And PHP Advanced:	PHP Form Handl	ing, PHP Form Validati	ion, 9 Hours
PHP Forms - Required Fields, PHP	Forms - Validate	E-mail and URL, PHP -	-
Complete Form Example, PHP Adv	vanced, PHP Inclu	de Files, PHP File Hand	lling,
PHP File Open/Read/Close, PHP Fi	ile Create/Write, P	PHP File Upload, PHP	
Cookies, PHP Sessions, PHP Filters	s, PHP Filters Adv	vanced.	
Module –4			
			raata a 0 Hauna
MySQL Database PHP MySQL Da	itabase, PHP Conr	nect to MySQL, PHP Ci	reate a 9 Hours
MySQL Database PHP MySQL Da MySQL Database, PHP MySQL	·	•	
• •	Create Table, PH	P MySQL Insert Data	, PHP

Clause, PHP MySQL Use The ORDER BY Clause, PHP MySQL Update Data.

Course outcomes: The students should be able to:

CO1: Discuss the fundamentals of web and concept of xhtml.

- CO2: Describe different concepts of JavaScript and xhtml documents and construct dynamic documents with Java Script.
- CO3: Describe xml using the user defined tags, dtd, namespaces and schemas with simple programs
- CO4: Discuss the concepts of php with associate dprograms
- CO5: Discuss different ways to access the database through the web using examples. Discuss various server based software using different technologies

Question paper pattern:

- The question paper will have two parts, PART-A (20 Marks) and PART-B (80 Marks)
- PART-A will have 12 questions covering all four modules the students must answer 10 questions
- PART-B will have total eight questions covering all four modules
- In Part-B there will be 2 full questions (with a maximum of three sub questions) from each module
- The students will have to answer 4 full questions, selecting one full question from each module

Text Books:

1. Programming the World Wide Web, 7th edition, Robert W.Sebesta , Pearson Education, ISBN- 9789332518827

Reference Books:

- 1. <u>http://www.tutorialspoint.com/</u>
- 2. http://www.w3schools.com/
- 3. Web Programming Building Internet Applications, 3rd edition, Chris Bates, Wiley publisher
- Web Technologies— HTML,JavaScript,PHP,java,JSP,ASP.Net,XML & Ajax Black Book, Wiley, ISBN : 978-81-7722-997-4
- PHP A Begineer's Guide --- Vikram Vaswami , TMH publishers. ISBN: 13:978-007-014069-1

Subject Code	SEMESTER BVOCAS152	IA Marks	20	
Number of Lecture Hours/Week	03	Exam Marks	80	
Total Number of Lecture Hours	36	Exam Hours	03	
	CREDITS –	03		
Course objectives: This course wil	l enable students to	0		
CO1: Provide a strong foundation	on in database con	cepts, technology, and	d practice.	
CO2: Practice SQL programmir	ng through a variet	y of database problem	ns.	
CO3: Demonstrate the use of co	ncurrency and tran	sactions in database		
CO4: Design and build database	e applications for r	eal world problems.		
Module – 1				Teaching
				Hours
Databases and Data Base Users:	Introduction, An	Example, Character	ristics of	9 Hours
the database approach, Actors on th	e scene, Workers	behind the scene, Adv	vantages	
of using the DBMS Approach, A	Brief History of I	Database Application	s, When	
Not to use a DBMS Database Syst	tem Concepts and	Architecture - Data	Models,	
Schemas, and Instances, Three-S	chema Architectu	re and Data Indepe	endence,	
Database Languages and Interf	aces, The Datal	base System Envir	ronment,	
Centralized and Client /Server	Architectures for	DBMSs, Classifica	ation of	
database Management System.				
Functional Dependencies and nor	malization for re	lational databases:	Informal	
Design guidelines for relation scho	emas, Functional	dependencies, Norma	al forms	
based on primary keys, General l	Definition of seco	nd and third norma	1 forms,	
Boyce-codd Normal form.				
Module – 2			I	
Data Modelling Using the Entity	-Relationship(EF	R) Model: Using Hig	gh-Level	9 Hours
Conceptual Data Models for Datab	ase Design, An ex	ample Database App	lication,	
Entity Types, Entity Sets, attribute	s and keys, Relati	on Types, Relationsl	nip Sets,	
roles and structural constraints, W	eak Entity Types,	Refining the ER De	esign for	
the Company Database, ER Diag	rams, naming, con	ventions and design	n issues,	

Module – 3				
Relational Data Model and Relational Data Base Constraints: Relational Model	9 Hours			
concepts, Relational Model Constraints and relational database schemas, Update				
Operation, Transaction and Dealing with constraints violations.				
Module –4				
Schema Definition, constraints, queries and views: SQL Data Definition and data	9 Hours			
types, Specifying constraints in SQL, Schema Change statement in SQL, Basic				
queries in SQL, More Complex SQL queries, INSERT, DELETE and UPDATE				
statements in SQL, Specifying constraints and Assertions and Triggers,				
Views(Virtual Tables) in SQL				
Course outcomes: The students should be able to:				
CO1: Identify, analyze and define database objects, enforce integrity constraints or	n a database			
using rdbms.				
CO2: Use structured query language (sql) for database manipulation.				
CO3: Design and build simple database systems develop application to interact with databases				
Question paper pattern:				
• The question paper will have two parts, PART-A (20 Marks) and PART-B (80 Marks)	arks)			
• PART-A will have 12 questions covering all four modules the students must answ	ver 10			
questions				
• PART-B will have total eight questions covering all four modules				
• In Part-B there will be 2 full questions (with a maximum of three sub questions) from each				
module				
• The students will have to answer 4 full questions, selecting one full question from	each module			
Text Books:				
 1.Fundamentals of Database Systems, Sixthedition, 2014, Ramez Elmasri, S Navathe, Pearson Education, ISBN- 9788131792476 2.http://www.w3resource.com/mongodb/nosql.phpfor NoSQL - UNIT VI 	Shamkan B.			
Reference Books:				
1.Fundamentals of Database Management Systems, Mark L. Gillenson, 2009, Wiley 2.Database Management Systems – Raghu Ramakrishnan and Johannes Gehrke – McGraw-Hill, 2003				
3.DBMS a practical approach, by E R Rajiv Chopra, S Chand publications.				
4. <u>http://elearning.vtu.ac.in/10CS54.html</u> 5. <u>http://www.tutorialspoint.com/dbms/</u>				
6.http://www.indiabix.com/technical/dbms-basics/				
7.http://beginner-sql-tutorial.com/sql.htm				

WEB PRO	GRAMMINGL	ABORATORY				
SEMESTER – II						
Laboratory Code	Laboratory CodeBVOCASP153IA Marks30					
Number of Lecture Hours/Week	of Lecture Hours/Week 06 Exam Marks 120					
Total Number of Lecture Hours	72	Exam Hours	03			
	CREDITS – 0	6				
Course objectives: This course wil	l enable students to)				
CO1: To study the concepts of we	eb application deve	elopment such as XH	HTML, XML, PHP,			
Java web software, and Database a	ccess through JDB	C and PHP.				
Laboratory Experiments:						
1. Write a JavaScript to design	a simple calculator	r to perform the follo	wing operations:			
sum, product, difference and	l quotient.					
2. Write a JavaScript that calcu	lates the squares an	nd cubes of the numb	pers from 0 to10and			
outputs HTML text that disp	plays the resulting v	values in an HTML ta	ableformat.			
3. Write a JavaScript code that	displays text "TEX	XT-GROWING" with	h increasing font			
size in the interval of 100ms	in RED COLOR,	when the font size re	aches 50pt it			
displays "TEXT- SHRINKI	NG" in BLUE colo	or. Then the font size	decreases to5pt			
4. Develop and demonstrate a	HTML5 file that in	cludes JavaScript scr	ript that uses			
functions for the following p	problems:					
a) Parameter: Astring						
b) Output: The position in the s	string of the left-mo	ost vowel				
c) Parameter: A number						
d) Output: The number with its	0					
5. Design an XML document t						
college affiliated to VTU. T		-	-			
College, Branch, Year of Jo	-		ta for 3students.			
Create a CSS style sheet and						
6. Write a PHP program to kee	-		g the web page and			
to display this count of visite	ors, with proper hea	adıngs.				
7. Write a PHP program to						
a) Implement simple operation						
b) Find the transpose of amatri						
c) Multiplication of two matric	ces.					

- d) Addition of two matrices
- 8. Write a PHP program named states.py that declares variable states with value "Mississippi Alabama Texas Massachusetts Kansas". write a PHP program that does the following:
- a) Search for a word in variable states that ends in xas. Store this word in element0 of a list named states List.
- b) Search for a word in states that begins with k and ends in s. Perform a case-insensitive comparison. [Note: Passing re. Ias a second parameter to method compile performs a case-insensitive comparison.] Store this word in element1 of states List.
- c) Search for a word in states that begins with M and ends in s. Store this word in element2 of the list.
- d) Search for a word in states that ends in a. Store this word in element 3 of the list
- 9. Write a PHP program to sort the student records which are stored in the database using selection sort.
- 10. Write a PHP program to display a digital clock which displays the current time of the server.

CO1: Describe xml using the user-defined tags, dtd, namespaces and schemas with simple programs.

CO2: Discuss the concepts of php with associated programs

CO3: Discuss different ways to access the database through the web using examples. Discuss various server based software using different technologies

Conduction of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- Students are allowed to pick three experiments from the lot.
- Strictly follow the instructions as printed on the cover page of answer script

Change of experiment is allowed only once and marks allotted to the procedure part to be made zero.

DATABASE MANAGEMENT SYSTEMS LABORATORY

SEMESTER – II

Laboratory Code	BVOCASP154	IA Marks	30	
Number of Lecture Hours/Week	06	Exam Marks	120	
Total Number of Lecture Hours	72	Exam Hours	03	
CREDITS – 06				

Course objectives: This course will enable students to

CO1: Foundation knowledge in database concepts, technology and practice to groom students into well-informed database application developers.

CO2: Strong practice in SQL programming through a variety of database problems.

CO3: Develop database applications using front-end tools and back-end DBMS

Laboratory Experiments:

PART-A: SQL Programming (Max. Exam Marks. 70)

- Design, develop, and implement the specified queries for the following problems using Oracle, MySQL, MS SQL Server, or any other DBMS under LINUX/Windows environment.
- 2. Create Schema and insert at least 5 records for each table. Add appropriate database constraints.

PART-B: Mini Project (Max. Exam Marks. 50)

 Use Java, C#, PHP, Python, or any other similar front-end tool. All applications must be demonstrated on desktop/laptop as a stand-alone or web based application (Mobile apps on Android/IOS are not permitted.)

Lab 1: Consider the following schema for a Library Database:

BOOK (Book id, Title, Publisher Name, Pub Year)

BOOK_AUTHORS (Book_id, Author_Name)

PUBLISHER (Name, Address, Phone)

BOOK_COPIES (Book_id, Branch_id, No-of_Copies)

BOOK_LENDING (Book_id, Branch_id, Card_No, Date_Out, Due_Date)

LIBRARY_BRANCH (Branch_id, Branch_Name, Address)

Write SQL queries to:

1. Retrieve details of all books in the library – id, title, name of publisher, authors, number of copies in each branch, etc.

- Get the particulars of borrowers who have borrowed more than 3 books, but from Jan 2019 to Jun 2020
- 3. Delete a book in BOOK table. Update the contents of other tables to reflect this data manipulation operation.
- 4. Partition the BOOK table based on year of publication. Demonstrate its working with a simple query.
- 5. Create a view of all books and its number of copies that are currently available in the Library.

Lab 2: Consider the following schema for Order Database:

SALESMAN (Salesman_id, Name, City, Commission)
CUSTOMER (Customer_id, Cust_Name, City, Grade, Salesman_id)
ORDERS (Ord_No, Purchase_Amt, Ord_Date, Customer_id, Salesman_id)

Write SQL queries to:

- 1. Count the customers with grades above Bangalore's average.
- 2. Find the name and numbers of all salesmen who had more than one customer.
- 3. List all salesmen and indicate those who have and don't have customers in their cities (Use UNION operation.)
- 4. Create a view that finds the salesman who has the customer with the highest order of a day.
- **5.** Demonstrate the DELETE operation by removing salesman with id 1000. All his orders must also be deleted.

Lab 3: Consider the schema for Movie Database:

ACTOR (Act_id, Act_Name, Act_Gender) DIRECTOR (Dir_id, Dir_Name, Dir_Phone) MOVIES (Mov_id, Mov_Title, Mov_Year, Mov_Lang, Dir_id) MOVIE CAST (Act id, Mov id, Role) RATING (Mov id, Rev Stars)

Write SQL queries to:

- 1. List the titles of all movies directed by 'Hitchcock'.
- 2. Find the movie names where one or more actors acted in two or more movies.
- List all actors who acted in a movie before 2000 and also in a movie after 2015 (use JOIN operation).

- 4. Find the title of movies and number of stars for each movie that has at least one rating and find the highest number of stars that movie received. Sort the result by movie title.
- 5. Update rating of all movies directed by 'Steven Spielberg' to 5.

Lab 4: Consider the schema for College Database:

STUDENT (USN, SName, Address, Phone, Gender)
SEMSEC (SSID, Sem, Sec)
CLASS (USN, SSID)
SUBJECT (Subcode, Title, Sem, Credits)
IAMARKS (USN, Subcode, SSID, Test1, Test2, Test3, FinalIA)

Write SQL queries to:

- 1. List all the student details studying in fourth semester 'C' section.
- 2. Compute the total number of male and female students in each semester and in each section.
- 3. Create a view of Test1 marks of student USN '1BI15CS101' in all subjects.
- 4. Calculate the FinalIA (average of best two test marks) and update the corresponding table for all students.
- 5. Categorize students based on the following criterion: If FinalIA = 17 to 20 then CAT = 'Outstanding' If FinalIA = 12 to 16 then CAT = 'Average' If FinalIA < 12 then CAT = 'Weak' Give these details only for 8th semester A, B, and C section students.

Lab 5: Consider the schema for Company Database:

EMPLOYEE (SSN, Name, Address, Sex, Salary, SuperSSN, DNo) DEPARTMENT (DNo, DName, MgrSSN, MgrStartDate) DLOCATION (DNo,DLoc) PROJECT (PNo, PName, PLocation, DNo) WORKS_ON (SSN, PNo, Hours)

Write SQL queries to:

- Make a list of all project numbers for projects that involve an employee whose last name is 'Scott', either as a worker or as a manager of the department that controls the project.
- Show the resulting salaries if every employee working on the 'IoT' project is given a 10 percent raise.

- 3. Find the sum of the salaries of all employees of the 'Accounts' department, as well as the maximum salary, the minimum salary, and the average salary in this department
- 4. Retrieve the name of each employee who works on all the projects controlled by department number 5 (use NOT EXISTS operator). For each department that has more than five employees, retrieve the department number and the number of its employees who are making more than Rs. 6,00,000.

CO1: Create, update and query on thedatabase.

CO2: Demonstrate the working of different concepts ofdbms

CO3: Implement, analyze and evaluate the project developed for anapplication

Conduction of Practical Examination:

- 1. All laboratory experiments from part A are to be included for practical examination.
- 2. Mini project has to be evaluated for 40 Marks and 10 Marks for record.
- 3. Report should be prepared in a standard format prescribed for project work.
- 4. Students are allowed to pick two experiment from part-A
- 5. Strictly follow the instructions as printed on the cover page of answer script.

Change of experiment is allowed only once and marks allotted to the procedure part to be made zero.

	SEMESTER –	II			
Laboratory CodeBVOCASP155IA Marks30					
Number of Lecture Hours/Week06Exam Marks120					
Total Number of Lecture Hours	72	Exam Hours	03		
	CREDITS – 0	6			
Course objectives: This course wil	l enable students to)			
CO1: Write flowcharts, algorith	ms and programs.				
CO2: Familiarize the processes	of debugging and e	execution.			
CO3: Implement basics of C pro	ogramming languag	ge.			
CO4: Illustrate solutions to the	laboratory program	S.			
Laboratory Experiments:					
1. Familiarization with program	nming environmen	t, concept of naming	the program files,		
storing, compilation, execut	ion and debugging.	Taking any simple O	C- code.		
2. Develop a program to solve	simple computation	nal problems using a	rithmetic		
expressions and use of each	operator leading to	simulation of a Com	nmercial calculator		
(No built-in math function)					
3. Develop a program to comp	ute the roots of a qu	uadratic equation by	accepting the		
coefficients. Print appropria	te messages.				
4. Develop a program to find t	he reverse of a posi	tive integer and chec	k for palindrome o		
not. Display appropriate me	ssages.				
5. An electricity board charges	the following rates	s for the use of electr	icity: for the first		
200 units 80 paise per unit:	for the next 100 un	its 90 paise per unit:	beyond 300 units		
Rs 1 per unit. All users are c	charged a minimum	of Rs. 100 as meter	charge. If the total		
amount is more than Rs. 400), then an additiona	l surcharge of 15% o	of total amount is		
charged. Write a program to	read the name of t	he user, number of u	nits consumed and		
print out the charges.					
6. Introduce 1D Array manipu	-				
7. Implement using functions t		0	ime and display		
appropriate messages. (No b	ouilt-in math function	on)			
8. Develop a program to introc	•		nent Matrix		
multiplication and ensure th	e rules of multiplic	ation are checked.			

- 9. Develop a Program to compute Sin(x) using Taylor series approximation. Compare your result with the built-in Library function. Print both the results with appropriate messages.
- 10. Write functions to implement string operations such as compare, concatenate, string length. Convince the parameter passing techniques.
- 11. Develop a program to sort the given set of N numbers using Bubble sort.
- 12. Develop a program to find the square root of a given number N and execute foe all possible inputs with appropriate messages. Note: Don't use library function sqrt(n).
- 13. Implement structures to read, write and compute average marks and the students scoring above and below the average marks for a class of N students.
- 14. Develop a program using pointers to compute the sum, mean and standard deviation of all elements stored in an array of n real numbers
- 15. Implement recursive functions for Binary to Decimal Conversion

CO1: Write algorithms, flowcharts and program for simpleproblems.

CO2: Correct syntax and logical errors to execute aprogram.

CO3: Write iterative and wherever possible recursive programs

CO4: Demonstrate use of functions, arrays, strings and structures in problemsolving

Conduction of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- Students are allowed to pick three experiments from the lot.
- Strictly follow the instructions as printed on the cover page of answer script

Change of experiment is allowed only once and marks allotted to the procedure part to be made zero.

PYTHON FOR DATA SCIENCE SEMESTER – III					
Number of Lecture Hours/Week	03	Exam Marks 8)		
Total Number of Lecture Hours	36	Exam Hours 0	3		
	CREDITS – (03			
Course objectives: This course wil	l enable students t	0			
CO1: Explore Python language	fundamentals, incl	uding basic syntax, variables	, and types		
CO2: Create and manipulate reg	gular Python lists				
CO3: Use functions and import	packages				
CO4: Build Numpy arrays, and	perform interestin	g calculations			
CO5: Create and customize plot	s on real data				
CO6: Supercharge your scripts	with control flow,	and get to know the Pandas I	Data Frame		
Module – 1			Teachin		
			g Hours		
Classes and Objects			9 Hours		
Classes and objects, Inheritance, Ex	ception Handling.				
Module – 2					
Using Numpy			9 Hours		
Basics of Numpy-Computation on	Numpy-Aggregat	tions-Computation on Array	5		
Comparisons, Masks and Boole	ean Arrays-Fancy	/ Indexing-Sorting Arrays	-		
Structured Data:					
NumPy's Structured Array.					
NumPy's Structured Array. Module – 3			9 Hours		
NumPy's Structured Array. Module – 3 Data Manipulation with Pandas	a indexing and Se	election-Operating on Data in			
NumPy's Structured Array. Module – 3 Data Manipulation with Pandas Introduction to Pandas Objects-Dat	-				
NumPy's Structured Array. Module – 3 Data Manipulation with Pandas Introduction to Pandas Objects-Dat Pandas-Handling Missing Data-Hie	-				
NumPy's Structured Array. Module – 3 Data Manipulation with Pandas Introduction to Pandas Objects-Dat Pandas-Handling Missing Data-Hie Module –4	-				
NumPy's Structured Array. Module – 3 Data Manipulation with Pandas Introduction to Pandas Objects-Dat Pandas-Handling Missing Data-Hie Module –4 Visualization and Matplotlib	rarchical Indexing	- Combining Data Sets	1 9 Hours		
Structured Data: NumPy's Structured Array. Module – 3 Data Manipulation with Pandas Introduction to Pandas Objects-Dat Pandas-Handling Missing Data-Hie Module –4 Visualization and Matplotlib Basic functions of matplotlib-Simp Plots- Histograms, Binning's and D	rarchical Indexing	- Combining Data Sets ter Plot-Density and Contou	n 9 Hours r		

CO1: Advanced concepts of python like writing pythonscripts.

CO2: Sequence and file operations inpython.

CO3: Use libraries like pandas, NumPy, matplotlib, scikit, and master the concepts like python machine learning, scripts, and sequence

Question paper pattern:

- The question paper will have two parts, PART-A (20 Marks) and PART-B (80 Marks)
- PART-A will have 12 questions covering all four modules the students must answer 10 questions
- PART-B will have total eight questions covering all four modules
- In Part-B there will be 2 full questions (with a maximum of three sub questions) from each module
- The students will have to answer 4 full questions, selecting one full question from each module

Text Books:

- 1. Jake VanderPlas ,Python Data Science Handbook Essential Tools for Working with Data, O'ReilyMedia,Inc, 2016
- 2. Zhang.Y ,An Introduction to Python and Computer Programming, Springer Publications,2016.
- 3. ReemaThareja, Python Programming using Problem Solving Approach, OXFORD University Press.

Reference Books:

- 1. Joel Grus ,Data Science from Scratch First Principles with Python, O'Reilly Media,2016
- 2. T.R.Padmanabhan, Programming with Python,Springer Publications,2016DBMS a practical approach , by E R Rajiv Chopra, S Chand publications.

OBJECT ORIENTED PROGRAMMING WITH JAVA SEMESTER – III					
Number of Lecture Hours/Week	03	Exam Marks	80		
Total Number of Lecture Hours	36	Exam Hours	03		
	CREDITS – ()3			
Course objectives: This course wil	l enable students t	0			
• Learn fundamental features	of object oriented	language and JAVA			
• Set up Java JDK environme	nt to create, debug	and run simple Java progra	ms.		
• Learn object oriented conce	pts using program	ming examples.			
• Study the concepts of impor	ting of packages a	nd exception handling mech	anism.		
• Discuss the String Handling	examples with Ob	oject Oriented concepts.			
Module – 1					
			g Hours		
Java introduction, java syntax, java comments, java variables, java datatypes, java			va 9 Hours		
type casting, java operators, java s	string, java match	, java Booleans, java if els	e,		
java switch, java while loop, java fo	or loop, java break	/continue, java array.			
Module – 2					
Java methods, java method param	eters, java metho	d overloading, java classe	es, 9 Hours		
java oop, java classes and objects	, java class attrib	ute, java class methods, ja	va		
constructors, java modifiers, jav	va encapsulation	, java packages/API, ja	va		
inheritance, java polymorphism ,jav	va inner classes, ja	va abstraction.			
Module – 3			1		
Java interface, java enums, java u	ser/input, java da	ta, java array list, java ha	sh 9 Hours		
map, java wrapper classes, java exc	eptions.				
Module –4					
Java file handling-java files, java create/write files, java read files, java delete files,			s, 9 Hours		
java how to add two numbers, java	keywords, java str	ing methods, java math			
methods.					
Course outcomes: The students sl	nould be able to:				
CO1: Understand how to install and	l use a good java d	levelopmentenvironment.			
CO2: Use an integrated development	nt environment to	write, compile, run, and tes	t simple		

object- oriented javaprograms

CO3: Demonstrate basic problem solving skills: analyzing problems, modeling a problem as a system of objects, creating algorithms, and implementing models and algorithms in an object- oriented computerlanguage

CO4: Read and make elementary modifications to java programs that solve realworldproblems

Question paper pattern:

- The question paper will have two parts, PART-A (20 Marks) and PART-B (80 Marks)
- PART-A will have 12 questions covering all four modules the students must answer 10 questions
- PART-B will have total eight questions covering all four modules
- In Part-B there will be 2 full questions (with a maximum of three sub questions) from each module
- The students will have to answer 4 full questions, selecting one full question from each module

Text Books:

1. Herbert Schildt, Java The Complete Reference, 7th Edition, Tata McGraw Hill, 2007

Reference Books:

- 1. Mahesh Bhave and Sunil Patekar, "Programming with Java", First Edition, Pearson Education, 2008, ISBN:9788131720806.
- 2. Rajkumar Buyya,S Thamarasi selvi, xingchen chu, Object oriented Programming with java, Tata McGraw Hill education private limited.
- 3. E Balagurusamy, Programming with Java A primer, Tata McGraw Hill companies.
- 4. Anita Seth and B L Juneja, JAVA One step Ahead, Oxford University Press, 2017

OBJECT ORIENTED PROGRAMMING WITH JAVA LABORATORY					
SEMESTER – III					
Laboratory Code	BVOCASP203	IA Marks	30		
Number of Lecture Hours/Week	06	Exam Marks	120		
Total Number of Lecture Hours	72	Exam Hours	03		
	CREDITS – 0	5			
Course objectives:					
CO1: Gain knowledge about	basic Java languag	ge syntax and sema	intics to write Java		
programs and use					
CO2: Concepts such as variable	s, conditional and i	terative execution m	ethods etc.		
CO3: Understand the fundame	entals of object-ori	ented programming	in Java, including		
defining classes, objects, invoki	ng methods etc. and	d exception handling	mechanisms.		
CO4: Understand the principles	of inheritance, pac	kages and interfaces			
Laboratory Experiments:					
1. Write a program to find fa	ctorial of list of r	umber reading inpu	it as command line		
argument.					
2. Write a program to display a	ll prime numbers b	etween two limits.			
3. Write a program to sort list	of elements in asc	ending and descend	ling order and show		
the exception handling.		-			
4. Write a program to impleme	nt Rhombus patter	n reading the limit fo	orm user.		
5. Write a program to impleme	nt all string operati	ons			
6. Write a program to find area	of geometrical fig	ures using method.			
7. Write a program to impleme			different number of		
Parameter of different types.					
8. Write a program to create s	tudent report using	applet, read the int	out using text boxes		
and display the o/p using bu			U		
9. Write a program to calculate		t departments using	method overriding.		
10. Write a program to impleme					
11. Write a program to impleme			ementing animation		
of ball moving.	, FF--·············	6 1 0 <i>7</i>	-8		
12. Write a program to impleme	nt mouse events				
13. Write a program to impleme					
	m keyboard events	•			

Course outcomes: The students should be able to:

CO1: Identifyclasses, objects, members of a class and relationships among them needed for a specific problem

CO2: Write java application programs using oop principles and proper programstructuring

CO3: Demonstrate the concepts of polymorphism and inheritance

CO4: Write java programs to implement error-handling techniques using exceptionhandling.

CO5: Understand and apply object oriented features and javaconcepts

Conduction of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- Students allowed to pick three experiments from the lot.
- Strictly follow the instructions as printed on the cover page of answer script

PYTHON FOR	DATA SCIEN	CE LABORATO	RY						
SEMESTER – III									
Laboratory Code	oratory Code BVOCASP204 IA Marks 30						BVOCASP204 IA Marks		30
Number of Lecture Hours/Week	06	Exam Marks	120						
Total Number of Lecture Hours	72	Exam Hours 03							
	CREDITS – 0	6	I						
Course objectives: This course wil	l enable students to)							
CO1: Explore Python language	fundamentals, inclu	uding basic syntax, v	variables, and types						
CO2: Create and manipulate reg	gular Python lists								
CO3: Use functions and import	packages								
CO4: Build Numpy arrays, and	perform interesting	calculations							
CO5: Create and customize plot	s on real data								
CO6: Supercharge your scripts	with control flow, a	and get to know the I	Pandas Data Frame.						
Laboratory Experiments:									
1. Write a program that has a	class student that	stores roll number,	name and marks (in						
three subjects) of the stude	nts. Display the in	formation (roll num	ber, name, and total						
marks) stored about the stud	ent.								
2. Write a program that has c	lasses such as Stu	dent, Course, and D	epartment. Enroll a						
student in a course of a parti	cular department								
3. Write program to do the foll	owings:								
a) Write a program to read tw	vo integers a and b	. Compute a/b and	print, when b is not						
zero. Raise an exception wh	en b is equal to zer	0.							
b) Write a program that promp	ots the user to enter	r a number. If the n	umber is Positive or						
Zero print it. Oth	herwise raise an exe	ception.							
4. Write a NumPy program to	compute sum of all	l elements, sum of ea	ach column and sum						
of each row of a given array									
5. Write a program to prepro	ocess the data usi	ng Numpy and skl	earn. preprocessing						
packages.									
6. Write program to do the foll	owings:								
a) create data frame df consisti	ing 10 rows and 4 o	columns of randomly	generated numbers						
between 1 to 100									
b) Create a new column such	that, each row co	ntains the row num	ber of nearest row-						
record by Euclidean distance	е.								

- 7. Use Automobile dataset, write program to answer the following questions:
- a) Clean the data and update the CSV file.
- b) Find the most expensive car.
- c) Find each company's highest price car.
- 8. Use Companies sales dataset, write program to answer the following questions:
- a) Read Total profit of all months and show it using a line plot.
- b) Read all product sales data and show it using a multiline plot.
- c) Calculate total sale data for last year for each product and show it using a Pie chart
- 9. Use SAHeart dataset, write program to answer the below questions:
- a) Draw a Bar plot to show the number of person having CHD or not in comparison to they having family history of the disease or not.
- b) Find out the number of CHD cases in different age categories. Do a Bar Plot and sort them in the order of age groups.
- 10. Use Iris data set, write program to answer the following questions:
- a) Find the mean, median, standard deviation of iris's sepal length (1st Column).
- b) Create a normalized form of iris's sepal length whose values range exactly between 0 and 1 so that the minimum has value 0 and maximum has value 1.
- c) Find the number and position of missing values in iris's sepal length (1st column)

Course outcomes: The students should be able to:

CO1: Advanced concepts of python like writing pythonscripts.

CO2: Sequence and file operations inpython.

CO3: Use libraries like pandas, NumPy, matplotlib, scikit, and master the concepts like python machine learning, scripts, and sequence

Conduction of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- Students are allowed to pick three experiments from the lot.
- Strictly follow the instructions as printed on the cover page of answer script

KOTLIN PROGRAMMING PROJECT			
	SEMESTER –	ш	
Laboratory Code	BVOCASP205	IA Marks	30
Number of Lecture Hours/Week	06	Exam Marks	120
Total Number of Lecture Hours	72	Exam Hours	03
	CREDITS – 0	6	i
Course objectives:			
CO1: Create professional application	ations using Kotl	in, the new Java-bas	sed programming
language			

CO2: Understand the basics of object-oriented software development, the most important development paradigm

CO3: Use Intellij, the popular Java (and Kotlin) IDE, to write code effectively and professionally

CO4: Understand the concepts of the Kotlin language and how it integrates neatly with Java

CO5: Understand the principles behind other object-oriented languages (like Java, C++, PHP, C#, Scala, or Swift)

Note: Carry out a Mini Project which includes two different applications with the help of open source tools by studying the below modules.

Section-A

Module1: Get started

You learn how to work with the Kotlin REPL (Read-Eval-Print Loop) interactive shell, and you practice using the basic syntax of Kotlin code.

Module2: Kotlin basics

You learn how to use Kotlin data types, operators, and variables, and how to work with booleans and conditions. You explore the difference between null able and non-null able variables, and you practice using arrays, lists, and loops in Kotlin.

Module 3: Functions

You learn how to create a program with a main () function and arguments in IntelliJ IDEA. You create small programs as you learn about default values, compact functions, list filters, basic lambdas, and higher-order functions.

Module 4: Classes and objects

You learn about classes, objects, and inheritance in Kotlin. You create small programs as you learn about abstract classes, interfaces, and interface delegation.

Module 5.1: Extensions

You learn about collections, constants, and extension functions in Kotlin. You create small programs as you learn about pairs, triples, lists, and hash maps for storing data, and implement extension functions to add functionality to existing classes.

Module 5.2: Generics

You learn about generic classes, methods, and functions in Kotlin. You create a type hierarchy, make classes more flexible by making them generic, and extend their functionality with generic methods and functions.

Module 6: Functional manipulation

You learn about annotations, labeled breaks, and Single Abstract Methods (SAMs). You also review lambdas and higher-order functions.

You then create and use lambdas and higher-order functions, and learn about higher-order functions in the Kotlin Standard Library.

Course outcomes: The students should be able to:

CO1: Develop skills to use android studio to buildapps.

CO2: Run app on a device or in theemulator

CO3: Be skilled to add interactivebuttons.

CO4: Build app functionality andui

CO5: Tackle databases and api

CO6: Perform unittesting

CO7: Fixbugs

Text Books

 Kotlin for Android Developers Learn Kotlin the easy way while developing an Android App

 $\ensuremath{\mathbb{C}}$ 2015 - 2016 Antonio Leiva

- 2. Programming Kotlin Familiarize yourself with all of Kotlin's features with this in depth guide by Stephen Samuel and Stefan Bocutiu
- 3. Kotlin in Action by Dmitry Jemerov and Svetlana Isakova.

Reference Books

- 1. Android Development with Kotlin, Learn Android application development with the extensive features of Kotlin by Marcin Moskala and Igor Wojda.
- 2. Kotlin Language Documentation.

References: Online Resources

- https://kotlinlang.org/
- https://codelabs.developers.google.com/
- https://developer.android.com/kotlin/learn
- https://codelabs.developers.google.com/kotlin-bootcamp/
- https://codelabs.developers.google.com/android-kotlin-fundamentals/
- https://codelabs.developers.google.com/advanced-android-kotlin-training/
- <u>https://openclassrooms.com/en/courses/5774406-learn-kotlin/6137246-get-the-most-out-of-this-course</u>
- <u>https://books.goalkicker.com/</u>
- https://www.cosmiclearn.com/kotlin/index.php

Conduction of Practical Examination:

- Students has to carry out a live demonstration of two different Mobile Application
- Each demonstration of carries 45 Marks each
- Viva-Voice carries 10 Marks
- Record carries 20 Marks
- Strictly follow the instructions as printed on the cover page of answer script

g HoANDROID OVERVIEW, What is Android?, Features of Android ,AndroidApplications, ANDROID – ENVIRONMENT SETUP,Step 1 - Setup JavaDevelopment Kit (JDK),,Step 2 - Setup Android SDK ,Step 3 - Setup EclipseIDE,Step 4 - Setup Android Development Tools (ADT) Plugin ,Step 5 - CreateAndroid Virtual Device, ANDROID – ARCHITECTURE, Linux kernel, Libraries,Android Runtime ,Application Framework ,Applications ANDROID –APPLICATIONS COMPONENT, Activities, Services, Broadcast Receivers,Content Providers, Additional Components, ANDROID – HELLO WORLDEXAMPLE, Create Android Application, Anatomy of Android Application ,TheMain Activity File , The Manifest File, The Strings File, The R File, The LayoutFile, Running the Application.Module – 2Android resources, android activities, android services, android broadcastP Horeceivers, android content providers, android fragments, android intents/filters.ANDRIOD-USER INTERFACE android ui layouts, ui controls, event handling,styles and themes, custom components. Android UI DESIGN, ANDROID UIPATTERNS, ANDRIOD UI testing.Module – 3	MOBILE APPLICATION DEVELOPMENT				
Number of Lecture Hours/Week03Exam Marks80Total Number of Lecture Hours36Exam Hours03CREDITS – 03Course objectives: This course will enable students to CO1: Learn to setup Android application development environment CO2: Illustrate user interfaces for interacting with apps and triggering actions CO3 Interpret tasks used in handling multiple activities CO4: Identify options to save persistent application data CO5: Appraise the role of security and performance in Android applicationsTeac g the g HoModule - 1Teac g HoANDROID OVERVIEW, What is Android? ,Features of Android ,Android Applications, ANDROID – ENVIRONMENT SETUP,Step 1 - Setup Java Development Kit (JDK),Step 2 - Setup Android SDK, Step 3 - Setup Eclipse IDE,Step 4 - Setup Android Development Tools (ADT) Plugin ,Step 5 - Create Android Runtime ,Application Framework ,Applications ANDROID – APPLICATIONS COMPONENT, Activities, Services, Broadeast Receivers, Content Providers, Additional Components, ANDROID – HELLO WORLD EXAMPLE, Create Android Application, Anatomy of Android Application ,The Main Activity File , The Manifest File, The Strings File, The R File, The Layout File, Running the Application.9 HoModule - 2Android content providers, android activities, android services, android broadcast receivers, android content providers, android fragments, android intents/filters. ANDRIOD-USER INTERFACE android ui layouts, ui controls, event handling, styles and themes, custom components. Android UI DESIGN, ANDROID UI PATTERNS, ANDRIOD UI testing.9 Ho	SEMESTER – IV				
Total Number of Lecture Hours 36 Exam Hours 03 CREDITS – 03 Course objectives: This course will enable students to CO1: Learn to setup Android application development environment CO2: Illustrate user interfaces for interacting with apps and triggering actions CO3: Interpret tasks used in handling multiple activities CO4: Identify options to save persistent application data CO5: Appraise the role of security and performance in Android applications Teac g Ho Module – 1 Teac g Ho ANDROID OVERVIEW, What is Android? ,Features of Android ,Android 9 Ho Applications, ANDROID – ENVIRONMENT SETUP,Step 1 - Setup Java Development Kit (JDK),,Step 2 - Setup Android SDK ,Step 3 - Setup Eclipse IDE,Step 4 - Setup Android Development Tools (ADT) Plugin ,Step 5 - Create Android Virtual Device, ANDROID – ARCHITECTURE, Linux kernel, Libraries ,Android Runtime ,Application Framework ,Applications ANDROID – APPLICATIONS COMPONENT, Activities, Services, Broadcast Receivers, Content Providers, Additional Components, ANDROID – HELLO WORLD EXAMPLE, Create Android Application, Anatomy of Android Application ,The Main Activity File , The Manifest File, The Strings File, The R File, The Layout File, Running the Application. 9 Ho Module – 2 Android content providers, android services, android intents/filters. ANDRIOD-USER INTERFACE android ui layouts, ui controls, event handling, styles and themes, custom components. Android UI DESIGN, ANDROID UI PATTERNS, ANDRIOD UI testing. 9 Ho	Subject Code	BVOCAS251	IA Marks 2	20	
CREDITS – 03 CREDITS – 03 Course objectives: This course will enable students to COI: Learn to setup Android application development environment CO2: Illustrate user interfaces for interacting with apps and triggering actions CO4: Identify options to save persistent application data CO5: Appraise the role of security and performance in Android applications Module – 1 Teac g Ho ANDROID OVERVIEW, What is Android?, Features of Android ,Android 9 Ho Applications, ANDROID – ENVIRONMENT SETUP,Step 1 - Setup Java Development Kit (JDK),,Step 2 - Setup Android SDK ,Step 3 - Setup Eclipse IDE,Step 4 - Setup Android Development Tools (ADT) Plugin ,Step 5 - Create Android Virtual Device, ANDROID – ARCHITECTURE ,Linux kernel, Libraries ,Android Runtime ,Application Framework ,Applications ANDROID – APPLICATIONS COMPONENT, Activities, Services, Broadcast Receivers, Content Providers, Additional Components, ANDROID – HELLO WORLD EXAMPLE, Create Android Application, Anatomy of Android Application ,The Main Activity File , The Manifest File, The Strings File, The R File, The Layout File, Running the Application. Module –2 Android content providers, android services, android broadcast receivers, android content providers, android ui layouts, ui controls, event handling, styles and themes, custom components. Android UI DESIGN, ANDROID U	Number of Lecture Hours/Week	03	Exam Marks 8	30	
Course objectives: This course will enable students to CO1: Learn to setup Android application development environment CO2: Illustrate user interfaces for interacting with apps and triggering actions CO3: Interpret tasks used in handling multiple activities CO4: Identify options to save persistent application data CO5: Appraise the role of security and performance in Android applications Module - 1 Teac g Ho ANDROID OVERVIEW, What is Android?, Features of Android ,Android Applications, ANDROID – ENVIRONMENT SETUP,Step 1 - Setup Java Development Kit (JDK),,Step 2 - Setup Android SDK ,Step 3 - Setup Eclipse IDE,Step 4 - Setup Android Development Tools (ADT) Plugin ,Step 5 - Create Android Runtime ,Application Framework ,Applications ANDROID – APPLICATIONS COMPONENT, Activities, Services, Broadcast Receivers, Content Providers, Additional Components, ANDROID – HELLO WORLD EXAMPLE, Create Android Application, Anatomy of Android Application ,The Main Activity File , The Manifest File, The Strings File, The R File, The Layout File, Running the Application. Module – 2 Android resources, android activities, android services, android broadcast receivers, android content providers, android fragments, android intents/filters. ANDRIOD-USER INTERFACE android u	Total Number of Lecture Hours	36	Exam Hours ()3	
CO1: Learn to setup Android application development environment CO2: Illustrate user interfaces for interacting with apps and triggering actions CO3: Interpret tasks used in handling multiple activities CO4: Identify options to save persistent application data CO5: Appraise the role of security and performance in Android applications Module – 1 Teac g Ho ANDROID OVERVIEW, What is Android?, Features of Android , Android Applications, ANDROID – ENVIRONMENT SETUP,Step 1 - Setup Java Development Kit (JDK),,Step 2 - Setup Android SDK ,Step 3 - Setup Eclipse IDE,Step 4 - Setup Android Development Tools (ADT) Plugin ,Step 5 - Create Android Runtime ,Application Framework ,Applications ANDROID – APPLICATIONS COMPONENT, Activities, Services, Broadcast Receivers, Content Providers, Additional Components, ANDROID – HELLO WORLD EXAMPLE, Create Android Application, Anatomy of Android Application ,The Main Activity File , The Manifest File, The Strings File, The R File, The Layout File, Running the Application. Module – 2 Android resources, android activities, android services, android broadcast receivers, android content providers, Android ui layouts, ui controls, event handling, styles and themes, custom components. Android UI DESIGN, ANDROID UI PATTERNS, ANDRIOD UI testing. <th></th> <th>CREDITS – 0</th> <th>3</th> <th></th>		CREDITS – 0	3		
CO2: Illustrate user interfaces for interacting with apps and triggering actions CO3: Interpret tasks used in handling multiple activities CO4: Identify options to save persistent application data CO5: Appraise the role of security and performance in Android applications Module – 1 Teac g Ho ANDROID OVERVIEW, What is Android?, Features of Android , Android Applications, ANDROID – ENVIRONMENT SETUP,Step 1 - Setup Java Development Kit (JDK),,Step 2 - Setup Android SDK ,Step 3 - Setup Eclipse IDE,Step 4 - Setup Android Development Tools (ADT) Plugin ,Step 5 - Create Android Runtime ,Application Framework ,Applications ANDROID – APPLICATIONS COMPONENT, Activities, Services, Broadcast Receivers, Content Providers, Additional Components, ANDROID – HELLO WORLD EXAMPLE, Create Android Application, Anatomy of Android Application ,The Main Activity File , The Manifest File, The Strings File, The R File, The Layout File, Running the Application. Module – 2 Android resources, android activities, android services, android broadcast receivers, android content providers, android ui layouts, ui controls, event handling, styles and themes, custom components. Android UI DESIGN, ANDROID UI PATTERNS, ANDRIOD UI testing. Module – 3	Course objectives: This course wil	l enable students to)		
CO3: Interpret tasks used in handling multiple activities CO4: Identify options to save persistent application data CO4: Identify options to save persistent application data CO5: Appraise the role of security and performance in Android applications Module - 1 Teac g Ho ANDROID OVERVIEW, What is Android?, Features of Android ,Android Applications, ANDROID – ENVIRONMENT SETUP,Step 1 - Setup Java Development Kit (JDK),,Step 2 - Setup Android SDK ,Step 3 - Setup Eclipse IDE,Step 4 - Setup Android Development Tools (ADT) Plugin ,Step 5 - Create Android Runtime ,Application Framework ,Applications ANDROID – APPLICATIONS COMPONENT, Activities, Services, Broadcast Receivers, Content Providers, Additional Components, ANDROID – HELLO WORLD EXAMPLE, Create Android Application, Anatomy of Android Application ,The Main Activity File , The Manifest File, The Strings File, The R File, The Layout File, Running the Application. Module – 2 Android resources, android activities, android services, android intents/filters. ANDRIOD-USER INTERFACE android ui layouts, ui controls, event handling, styles and themes, custom components. Android UI DESIGN, ANDROID UI PATTERNS, ANDRIOD UI testing. Module – 3	CO1: Learn to setup Android ap	plication developm	nent environment		
CO4: Identify options to save persistent application data CO5: Appraise the role of security and performance in Android applications Module - 1 Teac g Ho ANDROID OVERVIEW, What is Android?, Features of Android ,Android Applications, ANDROID – ENVIRONMENT SETUP,Step 1 - Setup Java Development Kit (JDK),,Step 2 - Setup Android SDK ,Step 3 - Setup Eclipse IDE,Step 4 - Setup Android Development Tools (ADT) Plugin ,Step 5 - Create Android Runtime ,Application Framework ,Applications ANDROID – APPLICATIONS COMPONENT, Activities, Services, Broadcast Receivers, Content Providers, Additional Components, ANDROID – HELLO WORLD EXAMPLE, Create Android Application, Anatomy of Android Application ,The Main Activity File , The Manifest File, The Strings File, The R File, The Layout File, Running the Application. Module – 2 Android resources, android activities, android services, android broadcast receivers, android content providers, android fragments, android intents/filters. ANDRIOD-USER INTERFACE android ui layouts, ui controls, event handling, styles and themes, custom components. Android UI DESIGN, ANDROID UI PATTERNS, ANDRIOD UI testing.	CO2: Illustrate user interfaces for	or interacting with	apps and triggering actions		
CO5: Appraise the role of security and performance in Android applications Module – 1 Teac g Ho ANDROID OVERVIEW, What is Android?, Features of Android , Android 9 Ho Applications, ANDROID – ENVIRONMENT SETUP,Step 1 - Setup Java 9 Ho Development Kit (JDK),,Step 2 - Setup Android SDK ,Step 3 - Setup Eclipse 1 IDE,Step 4 - Setup Android Development Tools (ADT) Plugin ,Step 5 - Create 1 Android Virtual Device, ANDROID – ARCHITECTURE, Linux kernel, Libraries ,Android Runtime ,Application Framework ,Applications ANDROID – APPLICATIONS COMPONENT, Activities, Services, Broadcast Receivers, 1 Content Providers, Additional Components, ANDROID – HELLO WORLD 1 EXAMPLE, Create Android Application, Anatomy of Android Application ,The 1 Main Activity File , The Manifest File, The Strings File, The R File, The Layout 1 File, Running the Application. 9 Ho Module – 2 2 4 Android resources, android activities, android services, android broadcast 9 Ho receivers, android content providers, android fragments, android intents/filters. ANDRIOD-USER INTERFACE android ui layouts, ui controls, event handling, styles and themes, custom components. Android UI DESIGN, ANDROID UI PATTERNS, ANDRIOD UI testing.	CO3: Interpret tasks used in har	dling multiple acti	vities		
Module – 1 Teac g Ho ANDROID OVERVIEW, What is Android?, Features of Android ,Android 9 Ho Applications, ANDROID – ENVIRONMENT SETUP,Step 1 - Setup Java Development Kit (JDK),,Step 2 - Setup Android SDK ,Step 3 - Setup Eclipse IDE,Step 4 - Setup Android Development Tools (ADT) Plugin ,Step 5 - Create Android Virtual Device, ANDROID – ARCHITECTURE ,Linux kernel, Libraries ,Android Runtime ,Application Framework ,Applications ANDROID – APPLICATIONS COMPONENT, Activities, Services, Broadcast Receivers, Content Providers, Additional Components, ANDROID – HELLO WORLD EXAMPLE, Create Android Application, Anatomy of Android Application ,The Main Activity File , The Manifest File, The Strings File, The R File, The Layout File, Running the Application. Module – 2 Android resources, android activities, android services, android broadcast receivers, android content providers, android fragments, android intents/filters. 9 Ho ANDRIOD-USER INTERFACE android ui layouts, ui controls, event handling, styles and themes, custom components. Android UI DESIGN, ANDROID UI PATTERNS, ANDRIOD UI testing. Module – 3	CO4: Identify options to save pe	ersistent application	n data		
g HoANDROID OVERVIEW, What is Android?, Features of Android ,AndroidApplications, ANDROID – ENVIRONMENT SETUP,Step 1 - Setup JavaDevelopment Kit (JDK),,Step 2 - Setup Android SDK ,Step 3 - Setup EclipseIDE,Step 4 - Setup Android Development Tools (ADT) Plugin ,Step 5 - CreateAndroid Virtual Device, ANDROID – ARCHITECTURE ,Linux kernel, Libraries,Android Runtime ,Application Framework ,Applications ANDROID –APPLICATIONS COMPONENT, Activities, Services, Broadcast Receivers,Content Providers, Additional Components, ANDROID – HELLO WORLDEXAMPLE, Create Android Application, Anatomy of Android Application ,TheMain Activity File , The Manifest File, The Strings File, The R File, The LayoutFile, Running the Application.Module – 2Android resources, android activities, android services, android broadcastreceivers, android content providers, android fragments, android intents/filters.ANDRIOD-USER INTERFACE android ui layouts, ui controls, event handling,styles and themes, custom components. Android UI DESIGN, ANDROID UIPATTERNS, ANDRIOD UI testing.Module – 3	CO5: Appraise the role of secur	ity and performance	e in Android applications		
ANDROID OVERVIEW, What is Android? ,Features of Android ,Android9 HoApplications, ANDROID – ENVIRONMENT SETUP,Step 1 - Setup JavaDevelopment Kit (JDK),,Step 2 - Setup Android SDK ,Step 3 - Setup EclipseIDE,Step 4 - Setup Android Development Tools (ADT) Plugin ,Step 5 - CreateAndroid Virtual Device, ANDROID – ARCHITECTURE ,Linux kernel, Libraries,Android Runtime ,Application Framework ,Applications ANDROID –APPLICATIONS COMPONENT, Activities, Services, Broadcast Receivers,Content Providers, Additional Components, ANDROID – HELLO WORLDEXAMPLE, Create Android Application, Anatomy of Android Application ,TheMain Activity File , The Manifest File, The Strings File, The R File, The LayoutFile, Running the Application.Module – 2Android resources, android activities, android fragments, android intents/filters.ANDRIOD-USER INTERFACE android ui layouts, ui controls, event handling, styles and themes, custom components. Android UI DESIGN, ANDROID UI PATTERNS, ANDRIOD UI testing.Module – 3	Module – 1			Teachin	
Applications, ANDROID – ENVIRONMENT SETUP,Step 1 - Setup Java Development Kit (JDK),,Step 2 - Setup Android SDK ,Step 3 - Setup Eclipse IDE,Step 4 - Setup Android Development Tools (ADT) Plugin ,Step 5 - Create Android Virtual Device, ANDROID – ARCHITECTURE ,Linux kernel, Libraries ,Android Runtime ,Application Framework ,Applications ANDROID – APPLICATIONS COMPONENT, Activities, Services, Broadcast Receivers, Content Providers, Additional Components, ANDROID – HELLO WORLD EXAMPLE, Create Android Application, Anatomy of Android Application ,The Main Activity File , The Manifest File, The Strings File, The R File, The Layout File, Running the Application.9 HoModule – 2Android resources, android activities, android services, android broadcast receivers, android content providers, android fragments, android intents/filters. ANDRIOD-USER INTERFACE android ui layouts, ui controls, event handling, styles and themes, custom components. Android UI DESIGN, ANDROID UI PATTERNS, ANDRIOD UI testing.9 Ho				g Hours	
Development Kit (JDK),,Step 2 - Setup Android SDK ,Step 3 - Setup Eclipse IDE,Step 4 - Setup Android Development Tools (ADT) Plugin ,Step 5 - Create Android Virtual Device, ANDROID – ARCHITECTURE ,Linux kernel, Libraries ,Android Runtime ,Application Framework ,Applications ANDROID – APPLICATIONS COMPONENT, Activities, Services, Broadcast Receivers, Content Providers, Additional Components, ANDROID – HELLO WORLD EXAMPLE, Create Android Application, Anatomy of Android Application ,The Main Activity File , The Manifest File, The Strings File, The R File, The Layout File, Running the Application. Module – 2 Android resources, android activities, android services, android broadcast Providers, Android ui layouts, ui controls, event handling, styles and themes, custom components. Android UI DESIGN, ANDROID UI PATTERNS, ANDRIOD UI testing. Module – 3	ANDROID OVERVIEW, What	is Android? ,Fea	tures of Android ,Andro	d 9 Hours	
IDE,Step 4 - Setup Android Development Tools (ADT) Plugin ,Step 5 - Create Android Virtual Device, ANDROID – ARCHITECTURE ,Linux kernel, Libraries ,Android Runtime ,Application Framework ,Applications ANDROID – APPLICATIONS COMPONENT, Activities, Services, Broadcast Receivers, Content Providers, Additional Components, ANDROID – HELLO WORLD EXAMPLE, Create Android Application, Anatomy of Android Application ,The Main Activity File , The Manifest File, The Strings File, The R File, The Layout File, Running the Application. Module – 2 Android resources, android activities, android services, android broadcast receivers, android content providers, android fragments, android intents/filters. ANDRIOD-USER INTERFACE android ui layouts, ui controls, event handling, styles and themes, custom components. Android UI DESIGN, ANDROID UI PATTERNS, ANDRIOD UI testing. Module – 3	Applications, ANDROID - ENV	VIRONMENT SE	TUP, Step 1 - Setup Jav	va 🛛	
Android Virtual Device, ANDROID – ARCHITECTURE ,Linux kernel, Libraries ,Android Runtime ,Application Framework ,Applications ANDROID – APPLICATIONS COMPONENT, Activities, Services, Broadcast Receivers, Content Providers, Additional Components, ANDROID – HELLO WORLD EXAMPLE, Create Android Application, Anatomy of Android Application ,The Main Activity File , The Manifest File, The Strings File, The R File, The Layout File, Running the Application. Module – 2 Android resources, android activities, android services, android broadcast receivers, android content providers, android fragments, android intents/filters. ANDRIOD-USER INTERFACE android ui layouts, ui controls, event handling, styles and themes, custom components. Android UI DESIGN, ANDROID UI PATTERNS, ANDRIOD UI testing. Module – 3	Development Kit (JDK),,Step 2 -	Setup Android S	DK ,Step 3 - Setup Eclips	se	
Android Runtime ,Application Framework ,Applications ANDROID – APPLICATIONS COMPONENT, Activities, Services, Broadcast Receivers, Content Providers, Additional Components, ANDROID – HELLO WORLD EXAMPLE, Create Android Application, Anatomy of Android Application ,The Main Activity File , The Manifest File, The Strings File, The R File, The Layout File, Running the Application. Module – 2 Android resources, android activities, android services, android broadcast receivers, android content providers, android fragments, android intents/filters. ANDRIOD-USER INTERFACE android ui layouts, ui controls, event handling, styles and themes, custom components. Android UI DESIGN, ANDROID UI PATTERNS, ANDRIOD UI testing. Module – 3	IDE,Step 4 - Setup Android Deve	lopment Tools (A	DT) Plugin ,Step 5 - Crea	te	
APPLICATIONS COMPONENT, Activities, Services, Broadcast Receivers, Content Providers, Additional Components, ANDROID – HELLO WORLD EXAMPLE, Create Android Application, Anatomy of Android Application ,The Main Activity File , The Manifest File, The Strings File, The R File, The Layout File, Running the Application. Module – 2 Android resources, android activities, android services, android broadcast 9 Ho receivers, android content providers, android fragments, android intents/filters. ANDRIOD-USER INTERFACE android ui layouts, ui controls, event handling, styles and themes, custom components. Android UI DESIGN, ANDROID UI PATTERNS, ANDRIOD UI testing. Module – 3	Android Virtual Device, ANDROII	D – ARCHITECT	URE ,Linux kernel, Librari	es	
Content Providers, Additional Components, ANDROID – HELLO WORLD EXAMPLE, Create Android Application, Anatomy of Android Application ,The Main Activity File , The Manifest File, The Strings File, The R File, The Layout File, Running the Application.Module – 1Module – 2Android resources, android activities, android services, android broadcast receivers, android content providers, android fragments, android intents/filters. ANDRIOD-USER INTERFACE android ui layouts, ui controls, event handling, styles and themes, custom components. Android UI DESIGN, ANDROID UI PATTERNS, ANDRIOD UI testing.9 HoModule – 3Module – 3	,Android Runtime ,Application	Framework ,A	pplications ANDROID	_	
EXAMPLE, Create Android Application, Anatomy of Android Application ,The Main Activity File , The Manifest File, The Strings File, The R File, The Layout File, Running the Application.Module – 1Module – 2Android resources, android activities, android services, android broadcast receivers, android content providers, android fragments, android intents/filters. ANDRIOD-USER INTERFACE android ui layouts, ui controls, event handling, styles and themes, custom components. Android UI DESIGN, ANDROID UI PATTERNS, ANDRIOD UI testing.9 HoModule – 31000000000000000000000000000000000000	APPLICATIONS COMPONENT,	Activities, Serv	vices, Broadcast Receiver	s,	
Main Activity File , The Manifest File, The Strings File, The R File, The Layout File, Running the Application.Module – 2Android resources, android activities, android services, android broadcast receivers, android content providers, android fragments, android intents/filters. ANDRIOD-USER INTERFACE android ui layouts, ui controls, event handling, styles and themes, custom components. Android UI DESIGN, ANDROID UI PATTERNS, ANDRIOD UI testing.Module – 3	Content Providers, Additional Co	omponents, AND	ROID – HELLO WORL	D	
File, Running the Application.Module – 2Android resources, android activities, android services, android broadcast9 Horeceivers, android content providers, android fragments, android intents/filters.ANDRIOD-USER INTERFACE android ui layouts, ui controls, event handling, styles and themes, custom components. Android UI DESIGN, ANDROID UI PATTERNS, ANDRIOD UI testing.Module – 3	EXAMPLE, Create Android Appli	cation, Anatomy	of Android Application ,Th	ie	
Module – 2 Android resources, android activities, android services, android broadcast generative receivers, android content providers, android fragments, android intents/filters. ANDRIOD-USER INTERFACE android ui layouts, ui controls, event handling, styles and themes, custom components. Android UI DESIGN, ANDROID UI PATTERNS, ANDRIOD UI testing. Module – 3	Main Activity File, The Manifest	File, The Strings l	File, The R File, The Layo	ut	
Android resources, android activities, android services, android broadcast9 Horeceivers, android content providers, android fragments, android intents/filters.ANDRIOD-USER INTERFACE android ui layouts, ui controls, event handling, styles and themes, custom components. Android UI DESIGN, ANDROID UI PATTERNS, ANDRIOD UI testing.Module – 3	File, Running the Application.				
receivers, android content providers, android fragments, android intents/filters. ANDRIOD-USER INTERFACE android ui layouts, ui controls, event handling, styles and themes, custom components. Android UI DESIGN, ANDROID UI PATTERNS, ANDRIOD UI testing. Module – 3	Module – 2				
ANDRIOD-USER INTERFACE android ui layouts, ui controls, event handling, styles and themes, custom components. Android UI DESIGN, ANDROID UI PATTERNS, ANDRIOD UI testing. Module – 3	Android resources, android acti	vities, android s	ervices, android broadca	st 9 Hours	
styles and themes, custom components. Android UI DESIGN, ANDROID UI PATTERNS, ANDRIOD UI testing. Module – 3	receivers, android content provide	ers, android fragm	ents, android intents/filter	s.	
PATTERNS, ANDRIOD UI testing. Module – 3	ANDRIOD-USER INTERFACE a	ndroid ui layouts,	ui controls, event handlin	g,	
Module – 3	styles and themes, custom compo	onents. Android U	VI DESIGN, ANDROID U	Л	
	PATTERNS, ANDRIOD UI testing	Ţ.			
Android advanced concepts-android-drag and drop, notifications, based services, 9 Ho	Module – 3			1	
	Android advanced concepts-android	d-drag and drop, r	otifications, based service	s, 9 Hours	

1' '1 1' 1 11 11'1' 1 '1 1]
sending email, sending sms, phone calls, publishing ,android alert dialogues,	
android animations, android audio capture, android audio manager, android auto	
complete, android best practices, android Bluetooth, android camera. Android Wi-	
Fi, android widgets, android XML parsers.	
Module –4	
Android developer tools, android emulator, android facebook integration, android	9 Hours
google maps, android image effects, android internal storage, android login screen,	
android media player, android multi touch, android navigation, android	
PHP/MySQL, android push notification, android SDK manager, android session	
management.	
Course outcomes: The students should be able to:	
CO1: Create, test and debug android application by setting up	android
developmentenvironment	
CO2: Implement adaptive, responsive user interfaces that work across a wide range of	ofdevices.
CO3: Infer long running tasks and background work in androidapplications	
CO4: Demonstrate methods in storing, sharing and retrieving data in androidapplicat	tions
CO5:	
Analyzeperformanceofandroidapplicationsandunderstandtheroleofpermissionsandsec	curity
CO6: Describe the steps involved in publishing android application to share with the	-
Question paper pattern:	
• The question paper will have two parts, PART-A (20 Marks) and PART-B (8	30 Marks)
• PART-A will have 12 questions covering all four modules the students must	answer 10
questions	
• PART-B will have total eight questions covering all four modules	
• In Part-B there will be 2 full questions (with a maximum of three sub questions)	ns) from
each module	
The students will have to answer 4 full questions, selecting one full question	from each
module	
Text Books:	
	41. 17.4141
 J F DiMarzio, "Beginning Android Programming with Android Studio", 4 Wiley India Pvt Ltd, 2016. ISBN-13: 978-8126565580 	in Edition,
 Google Developer Training, "Android Developer Fundamentals Course – Co 	ncent
	neepi
Reference", Google Developer Training Team, 2017.	

3. https://www.gitbook.com/book/googledeveloper-training/android-developerfundamentals-course-concepts/details (Download pdf file from the above link)

Reference Books:

- Erik Hellman, "Android Programming Pushing the Limits", 1st Edition, Wiley India Pvt Ltd, 2014.
- Dawn Griffiths and David Griffiths, "Head First Android Development", 1st Edition, O'Reilly SPD Publishers, 2015.
- Anubhav Pradhan, Anil V Deshpande, "Composing Mobile Apps" using Android, Wiley 2014, ISBN: 978-81-265-4660-2

INTRODUCT	ION TOGO	PROGRAMMING	
	SEMESTER –	IV	
Subject Code	BVOCAS252	IA Marks	20
Number of Lecture Hours/Week	03	Exam Marks	80
Total Number of Lecture Hours	36	Exam Hours	03
	CREDITS – 0	03	
Course objectives: This course wil	l enable students t	0	
CO1: Learn about what makes Go	a great language		
CO2: Learn how to install the Go	tool chain		
CO3: Learn how to setup Visual S	Studio Code to edit	and debug Go programs	
CO4: Learn how to work with the	Go Playground to	test and run snippets of Go	code
CO5: Learn and understand the ba	sic Go language s	yntax and features	
CO6: Learn how to use the Go too	ol chain commands	s to compile, test, and mana	ge Go code
CO7: And finally, you'll learn how	w to work with and	l manage Go modules for m	odule
dependency management			
Module – 1			Teachin
			g Hours
Introduction, Types, Variables Intr	oduction: Getting	Setup: Machine Setup, Te	xt 9 Hours
Editors, The Terminal, Environmer	nt, Go- Your First	Program, How to Read a C	òo
Program Types: Numbers, Strings,	Booleans Variable	es: How to Name a Variabl	e,
Scope, Constants, Defining Multiple	e Variables, An Ex	ample Program.	
Module – 2			
Control Structures, Arrays, Slices a	nd Maps and Func	tions Control Structures: T	ne 9 Hours
for Statement, If Statement, Switch	n Statement, Array	rs, Slices and Maps : Array	rs,
Slices-append, Copy, Maps, Fu	inctions: Your S	Second Function, Variad	ic
Functions, Closure, defer, panic an	nd recover, panic	and recover, pointers, The	*
and & Operators, new.			
Module – 3			<u> </u>
Structs and Interfaces, Concurrent	ncy, Packages str	ucts and Interfaces: struct	s, 9 Hours
Methods, Interfaces, Concurrency	: Go routines, C	hannels, Packages: Creatin	ng
Packages, Documentation			

Module –4
Packages and the Go Tool, Testing, Reflection Packages and the Go Tool: 9 Hours
Introduction, Import Paths, The package Declaration. Import Declaration, Blank
Imports, Packages and Naming, The Go Tool, Testing: The go test Tool, Test
Functions, Coverage, Benchmark Functions, Profiling, Example Functions,
Reflection: Why Reflection, reflect. Type and reflect. Value, Display, a Recursive
Value Print, Example: Encoding S-E xpressions, Setting Variables with reflect.
Value, Example: DecodingS-E xpressions, Accessing Struct Field Tags,
Displaying the Methods of a Type, A Word of Caution
Course outcomes: The students should be able to:
CO1: Learn go fundamentals and apply them in real worldscenarios
CO2: Get to grip with advanced features like go language and concurrency
CO3: Understand and develop your knowledge of programmingfundamentals
CO4: Build up a knowledge foundation for more advanced programminglanguages
CO5: Learn the language behind the super popular Dockertechnology
CO6: Everything you need to get up andgo
Question paper pattern:
• The question paper will have two parts, PART-A (20 Marks) and PART-B (80 Marks)
• PART-A will have 12 questions covering all four modules the students must answer 10
questions
• PART-B will have total eight questions covering all four modules
• In Part-B there will be 2 full questions (with a maximum of three sub questions) from
each module
The students will have to answer 4 full questions, selecting one full question from each
module
Text Books:
1. Introducing Go by Caleb Doxsey
2. An Introduction to Programming in Go By Caleb Doxsey
3. The Go Programming Language By Alan A. A. Donovan, Brian W. Kernighan
Reference Books:

Reference Books:

- 1. The Way To Go, a Thorough Introduction to the Go Programming Language By IVO BALBAERT
- 2. Go Boot camp: Everything you need to know to get started with Go By Matt Aimonetti

References: Online Resources

- 1. https://golang.org/doc/code.html
- 2. <u>https://gobyexample.com/</u>
- 3. https://www.tutorialspoint.com/go/
- 4. https://www.toptal.com/go/go-programming-a-step-by-step-introductory-tutorial
- 5. https://learning.oreilly.com/videos/ultimate-go-programming/9780134757476
- 6. https://www.golangprograms.com/go-language.html

7. https://cloudacademy.com/course/introduction-go-programminglanguage/introduction/#:~:text=Learning%20Objectives&text=Learn%20how%20to% 20setup%20Visual,test%2C%20and%20manage%20Go%20code

MOBILE APPLICA	TION DEVELOP	MENT LABORAT	ORY	
SEMESTER – IV				
Laboratory Code	BVOCASP253	IA Marks	30	
Number of Lecture Hours/Week	06	Exam Marks	120	
Total Number of Lecture Hours	72	Exam Hours	03	
	CREDITS – 00	6		
Course objectives: This course wil	l enable students to	,		
CO1: Describe those aspects of mo	bile programming	that make it unique f	rom programming	
for other platforms,				
CO2: Critique mobile applications	on their design pro	s and cons,		
CO3: Utilize rapid prototyping tech	hniques to design a	nd develop sophistica	ated mobile	
interfaces,				
CO4: Program mobile applications	for the Android op	erating system that u	ise basic and	
advanced phone features.				
CO5: Deploy applications to the A	ndroid marketplace	for distribution.		
Laboratory Experiments:				
1. To develop an application the	nat uses GUI Comp	onents, Fonts and Co	olors.	
2. To develop an application the	nat uses Layout Mar	nagers and Event Lis	teners.	
3. To develop an active calcula	atorapplication.			
4. To developanapplication that	tmakesuseofdatabas	se.		
5. To developanactiveapplicati	onthatusesGPSloca	tioninformation.		
6. To implementanapplication	hatwritesdatatothes	SDcard.		
7. To developanapplicationtha	tdrawsbasicgraphic	alprimitivesonthescr	een.	
8. To developanapplicationtha	tmakesuseofRSSFe	ed.		
9. To implementanapplication	hatimplementsmult	tithreading.		
10. To implementanapplicationt	hatcreatesanalert u	ponreceivingamessag	ge.	
11. To implementanapplication	hatcreatesalarmclo	ck.		
Course outcomes: The students she	ould be able to			
CO1: Apply essential android progr	ammingconcepts.			
CO2: Develop various android appl	ications related to 1	ayouts & rich uses ir	nteractiveinterfaces	
CO3: Gain knowledge concerning r	nobile operating sy	stems and theirarchit	ecture	
CO4: Recognize and setup a mobile	e device and applica	ation runtimeenviron	ment	
CO5: Be able to setup programm	ing tools for a mo	bile application dev	veloper (forselected	

modern mobileplatforms)

CO6: Understands the need for continuous improvement of his/her skills due to therapidly changing environment of mobiledevices

Online Resource:

- https://developer.android.com/guide
- https://www.tutorialspoint.com/android/
- https://www.udacity.com/course/android-development-for-beginners--ud837

Conduction of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- Students are allowed to pick three experiments from the lot.
- Strictly follow the instructions as printed on the cover page of answer script

INTRODUCTION T	OGO PROGRAM	IMING LABORAT	TORY	
SEMESTER – IV				
Laboratory Code	BVOCASP254	IA Marks	30	
Number of Lecture Hours/Week	06	Exam Marks	120	
Total Number of Lecture Hours	72	Exam Hours	03	
	CREDITS – 0	6	I	
Course objectives: This course wil	l enable students to)		
CO1: Master the fundamental synta	x of Go, including	variable declarations	, data types control	
structures, and functions				
CO1: Test, build, and deploy comm	and-line Go applic	ations		
CO1: Benchmark your Go applicati	ons			
CO1: Master use of the Go docume	ntation			
CO1: Manage state				
CO1: Build web services				
CO1: Write concurrent code				
CO1: Produce code more efficiently	with templating			
CO1: Package and deploy complete	Go applications			
Laboratory Experiments:				
1. Go Program to calculate wh	ether a number is E	even or Odd		
2. Go Program to display of sta	andard arithmetic o	perators with two int	teger values	
3. Go Program to find the LCM	A and GCD of give	n two numbers		
4. Go Program to find the inde	x of first occurrenc	e of a substring		
5. Go Program to find the first	and last element of	fslice in golang		
6. Go Program to find the total	numbers of charac	ters in a string		
7. Go Program to print full pyr	amid using STAR			
8. Go Program for implementa	tion of Binary sear	ch		
9. Go Program for implementa	tion of Linear searc	ch		
10. Go Program to generate mul	tiplication table			
11. Go Program to add two mate	rix using multi-dim	ensional arrays		
12. Go Program to calculate are	a of rectangle and s	square		
13. Go Program to check wheth	er a number is palin	ndrome or not		
14. Go Program to implementat	ion of Tower of Ha	noi algorithm		

15. Go Program to print the ASCII code for each letter in the Alphabet

16. Go Program to read the file line by line to string

17. Go Program to take user input and addition of two strings

18. Go Program to get current date and time in various format

19. Go Program to array reverse sort functions for integer and strings

20. Go Program to replace substrings in a string

Course outcomes: The students should be able to

CO1: Understand the fundamentals of go programminglanguage.

CO2: Make your own stand-alone command-line apps or scripts network and webservers.

CO3: Boost your hireability through innovative and independentlearning.

CO4: Understand and develop your knowledge of programmingfundamentals

CO5: Build up a knowledge foundation for more advanced programminglanguages

Conduction of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- Students are allowed to pickthree experiments from the lot.
- Strictly follow the instructions as printed on the cover page of answer script

DATA STRUCTURES AND APPLICATIONS PROJECT SEMESTER – IV Laboratory Code BVOCASP255 IA Marks 30 Number of Lecture Hours/Week 06 Exam Marks 120 Total Number of Lecture Hours 72 Exam Hours 03 CREDITS – 06

Course objectives: This laboratory course enable students to get practical experience in design, develop, implement, analyze and evaluation/testing of

CO1: Explain fundamentals of data structures and their applications essential for programming/problem solving.

CO2: Illustrate linear representation of data structures: Stack, Queues, Lists, Trees and Graphs.

CO3: Demonstrate sorting and searching algorithms.

CO4: Find suitable data structure during application development/Problem Solving.

CO5: Asymptotic performance of algorithms.

CO6: Linear data structures and their applications such as stacks, queues and lists

CO7: Non-Linear data structures and their applications such as trees and graphs

CO8: Sorting and searching algorithms

NOTE: Students has to go with self-learning with the below theory topics mentioned in the Section-A, and Carry out experiments mentioned in the Section-B.

Section-A

Introduction: Data Structures, Classifications (Primitive & Non Primitive), Data structure Operations, Review of Arrays, Structures, Self-Referential Structures, and Unions. Pointers and Dynamic Memory Allocation Functions. Representation of Linear Arrays in Memory, Dynamically allocated arrays. Array Operations: Traversing, inserting, deleting, searching, and sorting. Multidimensional Arrays, Polynomials and Sparse Matrices. Strings: Basic Terminology, Storing, Operations and Pattern Matching algorithms. Programming Examples.

Stacks: Definition, Stack Operations, Array Representation of Stacks, Stacks using Dynamic Arrays, Stack Applications: Polish notation, Infix to postfix conversion, evaluation of postfix expression. Recursion - Factorial, GCD, Fibonacci Sequence, Tower of Hanoi, Ackerman's function. Queues: Definition, Array Representation, Queue Operations, Circular Queues, Circular queues using Dynamic arrays, Dequeues, Priority Queues, A Mazing Problem. Multiple Stacks and Queues. Programming Examples.

Linked Lists: Definition, Representation of linked lists in Memory, Memory allocation; Garbage Collection. Linked list operations: Traversing, Searching, Insertion, and Deletion. Doubly Linked lists, Circular linked lists, and header linked lists. Linked Stacks and Queues. Applications of Linked lists – Polynomials, Sparse matrix representation. Programming Examples

Trees: Terminology, Binary Trees, Properties of Binary trees, Array and linked Representation of Binary Trees, Binary Tree Traversals - Inorder, postorder, preorder; Additional Binary tree operations. Threaded binary trees, Binary Search Trees – Definition, Insertion, Deletion, Traversal, Searching, Application of Trees-Evaluation of Expression, Programming Examples

Section-B

- 1. Design, Develop and Implement a menu driven Program in C for the following array operations.
 - a) Creating an array of N Integer Elements
 - b) Display of array Elements with Suitable Headings
 - c) Inserting an Element (ELEM) at a given valid Position (POS)
 - d) Deleting an Element at a given valid Position (POS)
 - e) Exit.

Support the program with functions for each of the above operations.

- 2. Design, develop and Implement a Program in C for the following operations on Strings.
 - a) Read a main String (STR), a Pattern String (PAT) and a Replace String (REP)
 - b) Perform Pattern Matching Operation: Find and Replace all occurrences of PAT in STR with REP if PAT exists in STR. Report suitable messages in case PAT does not exist in STR

Support the program with functions for each of the above operations. Don't use Built-in functions.

- 3. Design, Develop and Implement a menu driven Program in C for the following operations on STACK of Integers (Array Implementation of Stack with maximum size MAX)
 - a) Push an Element on to Stack
 - b) Pop an Element from Stack
 - c) Demonstrate how Stack can be used to check Palindrome

- d) Demonstrate Overflow and Underflow situations on Stack
- e) Display the status of Stack
- f) Exit

Support the program with appropriate functions for each of the above operations

- 4. Design, develop and Implement a Program in C for converting an Infix Expression to Postfix Expression. Program should support for both parenthesized and free parenthesized expressions with the operators: +, -, *, /, % (Remainder), ^ (Power) and alphanumeric operands.
- 5. Design, Develop and Implement a Program in C for the following Stack Applications
 - a) Evaluation of Suffix expression with single digit operands and operators: +, -, $*, /, \%, ^{\wedge}$
 - b) Solving Tower of Hanoi problem with n disks
- 6. Design, Develop and Implement a menu driven Program in C for the following operations on Circular QUEUE of Characters (Array Implementation of Queue with maximum size MAX)
 - a) Insert an Element on to Circular QUEUE
 - b) Delete an Element from Circular QUEUE
 - c) Demonstrate Overflow and Underflow situations on Circular QUEUE
 - d) Display the status of Circular QUEUE
 - e) Exit

Support the program with appropriate functions for each of the above operations

- 7. Design, Develop and Implement a menu driven Program in C for the following operations on Singly Linked List (SLL) of Student Data with the fields: USN, Name, Programmer, Sem, Phone
 - a) Create a SLL of N Students Data by using front insertion.
 - b) Display the status of SLL and count the number of nodes in it
 - c) Perform Insertion / Deletion at End of SLL
 - d) Perform Insertion / Deletion at Front of SLL(Demonstration of stack)
 - e) Exit
- Design, Develop and Implement a menu driven Program in C for the following operations on Doubly Linked List (DLL) of Employee Data with the fields: SSN, Name, Dept, Designation, Sal, PhNo
 - a) Create a DLL of N Employees Data by using end insertion.

- b) Display the status of DLL and count the number of nodes in it
- c) Perform Insertion and Deletion at End of DLL
- d) Perform Insertion and Deletion at Front of DLL
- e) Demonstrate how this DLL can be used as Double Ended Queue.
- f) Exit
- 9. Design, Develop and Implement a Program in C for the following operations on Singly Circular Linked List (SCLL) with header nodes
 - a) Represent and Evaluate a Polynomial P(x,y,z) = 6x2y2z-4yz5+3x3yz+2xy5z-2xyz3
 - b) Find the sum of two polynomials POLY1(x,y,z) and POLY2(x,y,z) and store the result in POLYSUM(x,y,z)

Support the program with appropriate functions for each of the above operations

- 10. Design, Develop and Implement a menu driven Program in C for the following operations on Binary Search Tree (BST) of Integers.
 - a) Create a BST of N Integers: 6, 9, 5, 2, 8, 15, 24, 14, 7, 8, 5, 2
 - b) Traverse the BST in Inorder, Preorder and Post Order
 - c) Search the BST for a given element (KEY) and report the appropriate message
 - d) Exit

11. Design, Develop and Implement a Program in C for the following operations on Graph(G) of Cities

- a) Create a Graph of N cities using Adjacency Matrix.
- b) Print all the nodes reachable from a given starting node in a digraph using DFS/BFS method
- 12. Given a File of N employee records with a set K of Keys (4-digit) which uniquely determine the records in file F. Assume that file F is maintained in memory by a Hash Table (HT) of m memory locations with L as the set of memory addresses (2-digit) of locations in HT. Let the keys in K and addresses in L are Integers. Design and develop a Program in C that uses Hash function H: K →L as H(K)=K mod m (remainder method), and implement hashing technique to map a given key K to the address space L. Resolve the collision (if any) using linear probing
- Course outcomes: The students should be able to:

CO1: Use different types of data structures, operations and algorithms

CO2: Apply searching and sorting operations on files

CO3: Use stack, Queue, Lists, Trees and Graphs in problem solving

CO4: Implement all data structures in a high-level language for problem solving.

CO5: Analyze and Compare various linear and non-linear data structures

CO6: Code, debug and demonstrate the working nature of different types of data structures and their applications

CO7: Implement, analyze and evaluate the searching and sorting algorithms

CO8: Choose the appropriate data structure for solving real world problems

Text Books

- 1. Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures in C, 2nd Ed, Universities Press, 2014.
- Seymour Lipschutz, Data Structures Schaum's Outlines, Revised 1st Ed, McGraw Hill, 2014

Reference Books

- Gilberg & Forouzan, Data Structures: A Pseudo-code approach with C, 2nd Ed, Cengage Learning, 2014.
- 2. Reema Thareja, Data Structures using C, 3rd Ed, Oxford press, 2012.
- 3. Jean-Paul Tremblay & Paul G. Sorenson, An Introduction to Data Structures with Applications, 2nd Ed, McGraw Hill, 2013
- 4. A M Tenenbaum, Data Structures using C, PHI, 1989
- 5. Robert Kruse, Data Structures and Program Design in C, 2nd Ed, PHI, 1996.

Conduction of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- Students are allowed to pick three experiments from the lot.
- Strictly follow the instructions as printed on the cover page of answer script

	T CORE PRO SEMESTER -		
Subject Code	BVOCAS301	IA Marks 20)
Number of Lecture Hours/Week	03	Exam Marks 8)
Total Number of Lecture Hours	36	Exam Hours0	
	CREDITS – (
Course objectives: This course will			
CO1: Understand the goals and be			
CO2: Learn how to build a compe		-	ing the
Razor view engine and clier	C	able ITTWIL user interface us	ing the
CO2: Client side programming: H	-	as JavaSarint HTML VML	
CO3: ASP.NET Web services and			
CO3: ASP.NET web services and CO4: Introduction to the .NET fra		IIty.	
CO5: NET Interoperation services Module – 1			Teachi
Niodule – 1			
			g Hour
Introduction to C# Programming			
Program: Printing a Line of Text,		• •	
Initialization of Variables, Variable	-	• •	
Types, CTS Types, Operators And	Statements, Array	s and Strings.	
Module – 2			
Object Oriented Programming:	Objects and Clas	ses, Methods and Properties	, 9 Hour
Constructors and Destructors.			
Inheritance: Types of Inheritance	· 1	versus Interface Inheritance	,
Multiple Inheritances, Structs and C			
Polymorphism: Abstract Classes			
Overloading, Implementing Polyme	orphism by Metho	od Overriding, Interfaces and	1
Structures			
Module – 3			
Interfaces: Defining and Implement	nting Interfaces, I	Derived Interfaces, Accessing	g 9 Hour
Interfaces, Overriding Interfaces,			
Structures: Defining Structs, C	reating Structs,	Creating Enum, Exception	ı
Handling, Exception Classes,	Standard Ex	xceptions, User Defined	1

Exceptions,Delegates	
Module –4	
Introduction to ASP.NET Core: Introduction: What is ASP.NET	9 Hours
Core?,ASP.NET Core Features,Advantages of ASP.NET Core,MVC	
Pattern, Understanding ASP.NET Core MVC, ASP.NET Core vs. ASP.NET MVC	
vs. ASP.NET Web Forms	
ASP.NET Core First Application: ASP.NET Core Environment Setup, ASP	
.NET Core First Application,Project Layout,Understanding Life Cycle of ASP.Net	
Core Request	
Course outcomes: The students should be able to:	1
CO1: Learn about ms.net framework developed byMicrosoft.	
CO2: Be able to using xml in c#.net specifically ado.net and sqlserver	
CO3: Be able to understand use of c# basics, objects and types, inheritance	
CO4: Develop, implement and creating applications withc#.	
CO5:Develop, implement, and demonstrate component services,	threading
remoting, windows services, web	
CO6: Understandandbeabletoexplainsecurityinthe.netframeworkanddeploymentinthe	e net.
Question paper pattern:	
• The question paper will have two parts, PART-A (20 Marks) and PART-B (8	80 Marks)
• PART-A will have 12 questions covering all four modules the students must	answer 10
questions	
• PART-B will have total eight questions covering all four modules	
• In Part-B there will be 2 full questions (with a maximum of three sub question	ons) from
each module	
The students will have to answer 4 full questions, selecting one full question	from each
module	
Text Books:	
1. Pro C# with .NET 3.0 – Andrew Troelsen, Special Edition, Dreamtech Press	, India,
2007.	
2. Programming in C# –E.Balagurusamy, 5th Reprint, TataMcGraw Hill, 2004.	. (For
Programming Examples)	

Reference Books:

- 1. Inside C# Tom Archer, WP Publishers, 2001. 2. C#:
- 2. The Complete Reference HerbertSchildt, Tata McGrawHill, 2004.
- 3. Programming in C# A Primer third Edition- E.Balagurusamy
- 4. Beginning ASP.NET 2.0 in C# 2005: From Novice to Professional-by Matthew MacDonald

References: Online Resources

YOUTUBE LINK

ASP.NET tutorial for beginners

https://www.youtube.com/watch?v=3AYoipyqOkQ&list=PL6n9fhu94yhXQS_p1i-

HLIftB9Y7Vnxlo

C# tutorial for beginners

https://www.youtube.com/watch?v=SXmVym6L8dw&list=PLAC325451207E3105

https://dotnet.microsoft.com/learn/videos

Introduction to C#

https://www.youtube.com/watch?v=SXmVym6L8dw&list=PLAC325451207E3105

Microsoft: C# fundamentals for absolute beginners

https://www.youtube.com/watch?v=MqGM70ljpq8&list=PLyJiOytEPs4eQUuzs3PhM_7yU63 jdibtf

WEBLINKS

https://dotnet.microsoft.com/learn/aspnet/what-is-aspnet-core

https://docs.microsoft.com/en-us/dotnet/core/tutorials/

https://docs.microsoft.com/en-us/aspnet/core/?view=aspnetcore-3.1

https://docs.microsoft.com/en-us/learn/

https://goalkicker.com/DotNETFrameworkBook/

https://www.tutorialsteacher.com/core/aspnet-core-introduction

https://www.c-sharpcorner.com/article/introduction-of-asp-net-core/

MACHIN	E LEARNING W	ITH PYTHON		
SEMESTER – V				
Subject Code	BVOCAS302	IA Marks	20	
Number of Lecture Hours/Week	03	Exam Marks	80	
Total Number of Lecture Hours	36	Exam Hours	03	
	CREDITS – 0)3		
Course objectives: This course will	enable students to			
CO1: Conceptualization and sur	nmarization of big	data and machine lea	rning,	
CO2: Trivial data versus big dat	ta,			
CO3: Big data computing techn	ologies,			
CO4: Machine learning technique	ues, and scaling up	machine learning app	proaches.	
Module – 1				Teachin
				g Hours
Introduction: Well posed learning	ng problems, De	signing a Learning	system,	9 Hours
Perspective and Issues in Machine	Learning. Concep	t Learning: Concept l	earning	
task, Concept learning as search,	Find-S algorithm	n, Version space, Ca	ndidate	
Elimination algorithm, Inductive Bi	as.			
Module – 2			L. L. L.	
Linear Regression: Simple Linea	ar Regression, ste	ps in building a Reg	gression	9 Hours
model, Building Simple Linear Re	egression Model, 1	Model Diagnostics, N	Aultiple	
Linear Regression.				
Module – 3			1	
Classification: Classification Ov	erview, Binary	Logistic Regression,	Credit	9 Hours
Classification, Gain Chart and Lift	Chart, Classificatio	on tree.		
Bayesian Learning: Introduction,	Bayes theorem, 1	Bayes theorem and	concept	
learning.				
Module –4				
Advanced Machine Learning: Gr	adient Descent Alg	gorithm, Scikit-Learn	Library	9 Hours
for Machine Learning.				
Clustering: Finding similarity dis	stance, K-Means	Clustering, Creating	Product	
Segments using Clustering, Hierarc	hical Clustering.			
Course outcomes: The students sh	hauld he able to.			
Course outcomes. The students si	iouiu oc abic to.			

and big data for variousapplications.

CO2: Exhibit an Ability to select and implement machine learning techniques and computing environment that are suitable for the applications underconsideration.

CO3: Demonstrate an ability to solve problems associated with batch learning and online learning, and the big data characteristics such as high dimensionality, dynamically growing data and in particular scalabilityissues.

CO4: Understand and apply scaling up machine learning techniques and associated computing techniques and technologies.

CO5: Recognize and implement various ways of selecting suitable model parameters for different machine learningtechniques.

CO6:

Be

abletointegratemachinelearninglibrariesandmathematicalandstatisticaltoolswithmodern technologies like Hadoop and mapreduce

Question paper pattern:

- The question paper will have two parts, PART-A (20 Marks) and PART-B (80 Marks)
- PART-A will have 12 questions covering all four modules the students must answer 10 questions
- PART-B will have total eight questions covering all four modules
- In Part-B there will be 2 full questions (with a maximum of three sub questions) from each module

The students will have to answer 4 full questions, selecting one full question from each module

Text Books:

- 1. Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education.
- 2. Manaranjan Pradhan, U Dinesh Kumar, Machine Learning using Python, Wiley Publication.

Reference Books:

- 1. Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics.
- 2. Ethem Alpaydın, Introduction to machine learning, second edition, MIT press.

UNIX AN	D SHELL PRO	OGRAMMING	
	SEMESTER -	- V	
Subject Code	BVOCAS303	IA Marks 2	0
Number of Lecture Hours/Week	03	Exam Marks 8	0
Total Number of Lecture Hours	36	Exam Hours (3
	CREDITS – ()3	
Course objectives: This course will	enable students to		
CO1:To provide introduction to UN	NIX Operating Sys	stem and its File System	
CO2:To gain an understanding of i	mportant aspects r	related to the SHELL and the	e process
CO3: Demonstrate the working	of basic comman	ds of Unix environment i	ncluding file
processing			
CO4: Demonstrate the usage of di	fferent shell comr	nands, variable and AWK f	ltering to the
given problem			
CO5: To provide a comprehens	ive introduction	to SHELL programming,	services and
utilities.			
Module – 1			Teachin
			g Hours
The Unix Operating System, The	UNIX architecture	e and Command Usage, Th	e 9 Hours
File System, Basic File Attributes, t	he vi Editor.		
Module – 2			
The Shell, The Process, Customizin	g the environment	t, More file attributes, Simp	e 9 Hours
filters			
Module – 3			
Filters using regular expressions, Es	ssential Shell Prog	ramming	9 Hours
Module –4			
awk – An Advanced Filter, perl - Tl	ne Master Manipul	lator	9 Hours
awk – All Advanced Filter, peri - Ti	1	lator	9 nours
Course outcomes: The students sh			9 Hours
	nould be able to:		
Course outcomes: The students sh	nould be able to:		
Course outcomes: The students sh CO1: Describe the architecture and	nould be able to: features of Unix of	operating system and disting	
Course outcomes: The students sh CO1: Describe the architecture and other operatingsystem	features of Unix of for file handling a	operating system and disting and processcontrol	uish it from
Course outcomes: The students sh CO1: Describe the architecture and other operatingsystem CO2: Demonstrate Unix commands	features of Unix of for file handling a	operating system and disting and processcontrol	uish it from

devise a shell script to solve theproblem

Question paper pattern:

- The question paper will have two parts, PART-A (20 Marks) and PART-B (80 Marks)
- PART-A will have 12 questions covering all four modules the students must answer 10 questions
- PART-B will have total eight questions covering all four modules
- In Part-B there will be 2 full questions (with a maximum of three sub questions) from each module

The students will have to answer 4 full questions, selecting one full question from each module

Text Books:

 Sumitabha Das: UNIX – Concepts and Applications, 4th Edition, Tata McGraw Hill, 2006. (Chapters 1.2, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 19)

Reference Books:

- 1. Behrouz A. Forouzan and Richard F. Gilberg: UNIX and Shell Programming, Cengage Learning, 2005.
- 2. M.G. Venkateshmurthy: UNIX & Shell Programming, Pearson Education, 2005.

MACHINE LEARN	ING WITH PY	THON LABORA	ATORY
	SEMESTER –	V	
Laboratory Code	BVOCASP305	IA Marks	30
Number of Lecture Hours/Week	06	Exam Marks	120
Total Number of Lecture Hours	72	Exam Hours	03
	CREDITS – 0	6	I
Course objectives: This course wil	l enable students to)	

CO1: The objectives of the course "Machine Learning and Data Mining" is to introduce students to state-of-the-art methods and modern programming tools for data analysis.

Laboratory Experiments:

1.	Fashion Trends Online (FTO) is an e-commerce company that sells women apparel. It
	is observed that 10% of their customers return the items purchased by them for many
	reasons (such as size, color and material mismatch). On a specific day 20 customers
	purchased items from FTO. Write program to answer the following:

- A) Probability that exactly five customers will return the items.
- B) Probability that a maximum of five customers will return the items.
- C) Probability that more than five customers will return the items purchased by them.
- D) Average number of customers who are likely to return the items and the variance and the standard deviation of the number of returns.
- 2. The number of calls arriving at a call center follows a passion distribution at 10 calls per hour. Write program to answer the following.
 - A) Calculate the probability that the number of calls will be maximum five.

B) Calculate the probability that the number of calls over a 3 hour period will exceed 30.

- 3. As per survey of pesticides among 1000 farmers in grape farming for around 10 acres of grape farmland, it was found that the grape farmers spray 38 liters of pesticides in a week on an average with the corresponding standard deviation of 5 liters. Assume that the pesticide spray per week follows a normal distribution. Write program to answer the following questions:
 - A) What proportion of the farmers is spraying more than 50 liters of pesticide in a week?
 - B) What proportion of the farmers is spraying less than 10 liters?

C) What proportion of the farmers is spraying between 30 liters and 60 liters?

- 4. Implement and demonstrate the **FIND-S algorithm** for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a CSV file.
- 5. For a given set of training data examples stored in a .CSV file, implement and demonstrate the **Candidate-Elimination algorithm** to output a description of the set of all hypotheses consistent with the training examples.
- 6. Design a program to implement the **Simple Linear Regression Model** for a sample training data set stored as a CSV file.
- 7. Design a program to implement the **Multi Linear Regression Model** for a sample training data set stored as a CSV file.
- 8. Design a program to implement the **Bayesian classifier** for a sample training data set stored as a CSV file.
- 9. Write a program to implement the **Gradient Descent** algorithm for predicting future sales using the dataset Advertising.csv.
- 10. Design a program to implement the **K-Means Clustering** for a sample training data set stored as a CSV file

Course outcomes: The students should be able to:

CO1: Understand complexity of machine learning algorithms and their limitations;

CO2: Understand modern notions in data analysis orientedcomputing

CO3: Be capable of confidently applying common machine learning algorithms in practice and implementing theirown;

CO4: Be capable of performing distributed computations;

CO5: Be capable of performing experiments in machine learning using real-worlddata

Conduction of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- Students are allowed to pick three experiments from the lot.
- Strictly follow the instructions as printed on the cover page of answer script

SEMESTER – V						
Laboratory Code	BVOCASP306	IA Marks	30			
Number of Lecture Hours/Week	06	Exam Marks	120			
Total Number of Lecture Hours	72	Exam Hours	03			
	CREDITS – 0	6				
Course objectives: This course wil	l enable students to					
CO1: This course introduces basic	understanding of	UNIX OS, UNIX c	commands and Fi			
system and to familiarize student	ts with the Linux	environment. To r	nake student lea			
fundamentals of shell scripting ar	nd shell programm	ing. Emphases are	on making stude			
familiar with UNIX environment an	d issues related to	it.				
Laboratory Experiments:						
Laboratory Experiments:						
a) Explore Unix Environment.						
b) Explore vi- editor with Vim tutor						
Perform the following operations us	sing vi editor, but n	ot limited to:				
1. Insert character, delete character,	and replace charac	ter.				
2. Save File and continue working.						
3. Save File and exit editor.						
4. Quit the editor.						
5. Quit without saving the file.						
6. Rename a file.						
7. Insert lines, delete line.						
8. Setline numbers.						
9. Search for a pattern.						
9. Search for a pattern.	akes a valid direc	tory name as an ar	gument recursive			
9. Search for a pattern.10. Move forward and backward.		-	-			

name as directories. For example, if the script is named as mpc, then the command mpc

a/b/c/d should create sub-directories a, a/b, a/b/c, a/b/c/d.

2a. Write a shell script that accepts two filenames as arguments, checks if the permissions for these files are identical and if the permissions are identical, output common permissions otherwise output each filename followed by its permissions.

2b. Write a shell script which accepts valid log-in names as arguments and prints their corresponding home directories, if no arguments are specified, print a suitable error message.

3a. Create a script file called file properties that reads a filename entered and outputs it properties.

3b. Write a shell script to implement terminal locking (Similar to the lock command). It should prompt for the user for a password. After accepting the password entered by the user, it must prompt again for the matching password as confirmation and if match occurs, it must lock the keyword until a matching password is entered again by the user. Note the Script must be written to disregard BREAK, control-D. No time limit need be implemented for the lock duration

4a. Write a shell script that accept one or more file names as argument and convert all of them to uppercase, provided they exists in current directory.

4b. Write a shell script that displays all the links to a file specified as the first argument to the script. The second argument, which is optional, can be used to specify in which the search is to begin. If this second argument is not present, the search is to begin in the current working directory. In either case, the starting directory as well as its subdirectories at all levels must be searched. The script need not include error checking.

5a. Write a shell script that accepts filename as argument and display its creation time if file exist and if does not send output error message.

5b. Write a shell script to display the calendar for the current month with current date replaced by * or ** depending whether the date is one digit or two digit.

6a. Write s a shell script to find a file/s that matches a pattern given as command line

argument in the home directory, display the contents of the file and copy the file into the directory ~/mydir.

6b. Write a shell script to list all the files in a directory whose filename is at least 10 characters. (Use expr command to check the length).

7a. Write a shell script that gets executed and displays the message either "Good Morning" or "Good Afternoon" or "Good Evening" depending upon time at which the user logs in.

7b. Write a shell script that accepts a list of filenames as its argument, count and report occurrence of each word that is present in the first argument file on other argument files 8a. Write a shell script that determine the period for which as specified user is working on a system and display appropriate message.

8b. Write a shell script that reports the logging on of as specified user within one minute after he/she login. The script automatically terminates if specified user does not login during specified in period of time.

9a. Write a shell script that accepts the filename, starting and ending line number as an argument and display all the lines between the given line number.

9b. Write a shell script that folds long lines into 40 columns. Thus any line that exceeds 40 characters must be broken after 40th, a "/" is to be appended as the indication of folding and processing is to be continued with the residue. The input is to be supplied through a text file created by the user.

10a. Write an awk script that accepts date argument in the form of dd-mm-yy and display it in the form month, day and year. The script should check the validity of the argument and in the case of error, display a suitable message.

10b. Write an awk script to delete duplicated line from a text file. The order of the original lines must remain unchanged.

11a. Write an awkscript to find out total number of books sold in each discipline as well as total book sold using associate array down table as given below.

Electrical-34

Mechanical-67

Electrical-80 Computer Science-43 Civil-98

Mechanical-65

Computer Science-64

11b. Write an awkscript to compute gross salary of an employee accordingly to rule given below. If basic salary < 10000 then HRA=15% of basic & DA=45% of basic. If basic salary is >=1000 then HRA=20% of basic & DA=50% of basic.

Course outcomes: The students should be able to:

CO1: Demonstrate the working of basic commands of unix environment including fileprocessing

CO2: Apply regular expression to perform pattern matching using utilities like grep, sed andawk.

CO3: Implement unix commands/ system calls to demonstrate processmanagement

CO4: Demonstrate the usage of different shell commands, variable and awk filtering to the given problem.

CO5: Develop shell scripts for developing the simple applications to the givenproblem

Conduction of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- Students are allowed to pick three experiments from the lot.
- Strictly follow the instructions as printed on the cover page of answer script

	OPS FOR DEV		
	SEMESTER –	·V	
Subject Code	BVOCAS304	IA Marks	20
Number of Lecture Hours/Week	03	Exam Marks	80
Total Number of Lecture Hours	36	Exam Hours	03
	CREDITS – (03	
Course objectives: This course will	enable students to		
CO1: Understand the fundamental	ls of DevOps en	gineering and be fully pr	oficient with
DevOps terminologies, con-	cepts, benefits, a	and deployment options t	o meet you
business requirements			
CO2: Be able to deliver change requ	uests from custom	ers rapidly and effectively b	y adding nev
(and updating existing) featur	es		
CO3: Obtain complete knowledge c	of the "version cor	ntrol system" to effectively	track change
augmented with Git and Githu	ub training		
CO4: Have a detailed overview of c	continuous integra	tion and container ecosyste	m by learnin
tools such as Jenkins and Doc	eker		
CO5: Successfully transition from a	software engineer	to a DevOps engineer	
-	software engineer	to a DevOps engineer	Teachin
-	software engineer	to a DevOps engineer	
Module – 1			g Hours
Module – 1 Fundamentals:Beginning DevOps f			g Hours
Module – 1 Fundamentals:Beginning DevOps f Blocks of DevOps			g Hours
Module – 1 Fundamentals:Beginning DevOps f	for Developers, In	troducing DevOps, Buildin	g Hours
	for Developers, In	troducing DevOps, Buildin	g Hours
Module – 1 Fundamentals:Beginning DevOps f Blocks of DevOps Module – 2 Metrics and Measurement View: Qu	for Developers, In	troducing DevOps, Buildin	g Hours
Module – 1 Fundamentals:Beginning DevOps f Blocks of DevOps Module – 2 Metrics and Measurement View: Qu Module – 3 Process View: Gain fast Feedback, N	for Developers, In	troducing DevOps, Buildin	g Hours ng 9 Hours s 9 Hours
Module – 1 Fundamentals:Beginning DevOps f Blocks of DevOps Module – 2 Metrics and Measurement View: Qu Module – 3 Process View: Gain fast Feedback, I Module –4	for Developers, In uality and Testing, Unified and Holist	atroducing DevOps, Buildin Introduce Shared Incentive	g Hours ng 9 Hours s 9 Hours 9 Hours 9 Hours
Module – 1 Fundamentals:Beginning DevOps f Blocks of DevOps Module – 2 Metrics and Measurement View: Qu Module – 3 Process View: Gain fast Feedback, U Module –4 Technical View: Automatic Relea	for Developers, In uality and Testing, Unified and Holist	atroducing DevOps, Buildin Introduce Shared Incentive	g Hours ng 9 Hours s 9 Hours 9 Hours 9 Hours
Module – 1 Fundamentals:Beginning DevOps f Blocks of DevOps Module – 2 Metrics and Measurement View: Qu Module – 3 Process View: Gain fast Feedback, U Module –4 Technical View: Automatic Relea Example	for Developers, In uality and Testing, Unified and Holist	atroducing DevOps, Buildin Introduce Shared Incentive	g Hours
Module – 1 Fundamentals:Beginning DevOps f Blocks of DevOps Module – 2 Metrics and Measurement View: Qu Module – 3	for Developers, In uality and Testing, Unified and Holist sing, Infrastructur	Introducing DevOps, Buildin Introduce Shared Incentive ic Approach	g Hours ng 9 Hours s 9 Hours 9 Hours oy 9 Hours

Question paper pattern:

- The question paper will have two parts, PART-A (20 Marks) and PART-B (80 Marks)
- PART-A will have 12 questions covering all four modules the students must answer 10 questions
- PART-B will have total eight questions covering all four modules
- In Part-B there will be 2 full questions (with a maximum of three sub questions) from each module

The students will have to answer 4 full questions, selecting one full question from each module

Text Books:

 DevOps for Developers -Integrate Development and Operations, The Agile Way By Michael Huttermann

Reference Books:

1. The DevOps Handbook-How to create World-Class Agility, Reliability, & Security in Technology Organization By Gene Kim, Jez Humble, Patrick Debois, and John Willis

		ERS PROJECT			
SEMESTER – V					
Laboratory Code	BVOCASP307	IA Marks	30		
Number of Lecture Hours/Week		Exam Marks	120		
Total Number of Lecture Hours	72	Exam Hours	03		
	CREDITS – 0				
Course objectives: This course wil					
CO1: Understand the fundamenta	als of DevOps en	gineering and be fu	ally proficient with		
DevOps terminologies, con	ncepts, benefits, a	nd deployment opt	ions to meet yo		
business requirements					
CO2: Be able to deliver change r	equests from custo	mers rapidly and ef	fectively by addin		
new (and updating existing)	features				
CO3: Obtain complete knowledge	of the "version con	trol system" to effec	tively track chang		
augmented with Git and Git	hub training				
CO4: Have a detailed overview of	continuous integrat	ion and container ec	osystem by learnin		
tools such as Jenkins and Do	ocker				
CO5: Successfully transition from	a software engineer	to a DevOps engine	er		
Laboratory Experiments:					
1. Introduction to DevOps e	nvironment: Why	DevOps? What is	DevOps? DevOp		
Market Trends, DevOps	Engineer Skills,	DevOps Delivery	Pipeline, DevO		
Ecosystem after understand	ing the concepts ea	ch individual has to	create / find out		
least two Use Case why Dev	Ops is required?				
2. Version Control with Git:	What is version c	ontrol, What is Git,	Why Git for yo		
organization, Install Git,	Common comma	unds in Git, Work	king with Remo		
Repositories					
3. Continuous Integration usir	ng Jenkins: Jenkins	Management, Add	ing a slave node		
Jenkins, Building Delivery	Pipeline, Pipeline	as a Code, Build t	he pipeline of jo		
using Jenkins, Create a pipe					
using Jenkins, Create a pipe 4. Configuration Management	with Ansible: Intro	duction to Ansible,	Ansible Installatio		
using Jenkins, Create a pipe 4. Configuration Management Configuring Ansible Roles,	with Ansible: Intro Write Playbooks, E	duction to Ansible, A	Ansible Installatio mand		
using Jenkins, Create a pipe 4. Configuration Management	with Ansible: Intro Write Playbooks, E Cloud: Learn ab	duction to Ansible, A Executing adhoc com out various cloud s	Ansible Installatio mand ervices and servio		

AWS, Various AWS services, DevOps using AWS

Course outcomes: The students should be able to:

CO1: Continuous development, continuous testing, configuration management, including continuous integration and continuous deployment and finally continuous monitoring of the software throughout its DevOPs development lifecycle.

Conduction of Practical Examination:

- Students has to conduct a mini project on laboratory experiments considering twodifferent test cases related to DevOps
- Use open Source tools for successful completion of mini project
- Refer to online resources to complete the project
- All laboratory experiments should be carried out by each individual student
- Strictly follow the instructions as printed on the cover page of answer script
- Students has to build Two different Test Cases / Mini Project by considering the lab experiments

Test Case 1: 45 Marks , Test Case 2: 45 Marks, Viva-Voice: 10 Marks, Record: 20 Marks

Change of experiment is allowed only once and marks allotted to the procedure part to be made zero.

INT	FERNET OF T	HINGS	
	SEMESTER –	VI	
Subject Code	BVOCAS351	IA Marks	20
Number of Lecture Hours/Week	03	Exam Marks	80
Total Number of Lecture Hours	36	Exam Hours	03
	CREDITS – 0	03	
Course objectives: This course will	enable students to		
CO1: Assess the genesis and impac	t of IoT application	ns, architectures in real wo	rld.
CO2: Illustrate diverse methods of	deploying smart of	ojects and connect them to	network.
CO3: Compare different Applicatio	n protocols for Io7		
CO4: Infer the role of Data Analytic	cs and Security in	IoT.	
CO5: Identify sensor technologies f	or sensing real wo	rld entities and understand	the role of
IoT in various domains of In	dustry.		
Module – 1			Teachin
			g Hours
What is IoT, Genesis of IoT, IoT and	nd Digitization, Io	T Impact, Convergence of	IT 9 Hours
and IoT, IoT Challenges, IoT Netw	work Architecture	and Design, Drivers Beh	ind
New Network Architectures, Con	nparing IoT Arch	itectures, A Simplified I	оТ
Architecture, The Core IoT Function	onal Stack, IoT Dat	ta Management and Comp	ute
Stack? Smart Objects: The "Thin	ngs" in IoT, Sen	sors, Actuators, and Sm	art
Objects, Sensor Networks, Connec	ting Smart Object	ts, Communications Criter	ria,
IoT Access Technologies.			
Module – 2			
IP as the IoT Network Layer,	The Business C	Case for IP, The need	for 9 Hours
Optimization, Optimizing IP for	IoT, Profiles and	d Compliances, Applicat	ion
Protocols for IoT, The Transport La	yer, IoT Applicati	on Transport Methods.	
Module – 3			I
Data and Analytics for IoT, An In	troduction to Data	Analytics for IoT, Mach	ine 9 Hours
Learning, Big Data Analytics Tool	ls and Technology	v, Edge Streaming Analyti	cs,
Network Analytics, Securing IoT	, A Brief History	v of OT Security, Comm	ion
Challenges in OT Security, How IT	and OT Security	Practices and Systems Va	ry,
Formal Risk Analysis Structures: C	CTAVE and FAI	R, The Phased Application	of
Security in an Operational Environm	nent		

Module –4	
IoT Physical Devices and Endpoints - Arduino UNO: Introduction to Arduino,	9 Hours
Arduino UNO, Installing the Software, Fundamentals of Arduino Programming.	
IoT Physical Devices and Endpoints - RaspberryPi: Introduction to RaspberryPi,	
About the RaspberryPi Board: Hardware Layout, Operating Systems on	
RaspberryPi, Configuring RaspberryPi, Programming RaspberryPi with Python,	
Wireless Temperature Monitoring System Using Pi, DS18B20 Temperature	
Sensor, Connecting Raspberry Pi via SSH, Accessing Temperature from DS18B20	
sensors, Remote access to RaspberryPi, Smart and Connected Cities, An IoT	
Strategy for Smarter Cities, Smart City IoT Architecture, Smart City Security	
Architecture, Smart City Use-Case Examples.	

Course outcomes: The students should be able to:

CO1: Interpret the impact and challenges posed by IoT networks leading to new architecturalmodels.

CO2: Compare and contrast the deployment of smart objects and the technologies to connect them to network.

CO3: Appraise the role of IoT protocols for efficient networkcommunication.

CO4: Elaborate the need for data analytics and security inIoT

CO5: Illustrate different sensor technologies for sensing real world entities and identify the applications of IoT in industry.

Question paper pattern:

- The question paper will have two parts, PART-A (20 Marks) and PART-B (80 Marks)
- PART-A will have 12 questions covering all four modules the students must answer 10 questions
- PART-B will have total eight questions covering all four modules
- In Part-B there will be 2 full questions (with a maximum of three sub questions) from each module

The students will have to answer 4 full questions, selecting one full question from each module

Text Books:

 David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry,"IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", 1st Edition, Pearson Education (Cisco Press Indian Reprint). (ISBN: 978-9386873743)

2. Srinivasa K G, "Internet of Things", CENGAGE Leaning India, 2017

Reference Books:

- Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-on-Approach)", 1st Edition VPT, 2014. (ISBN: 978-8173719547)
- Raj Kamal, "Internet of Things: Architecture and Design Principles", 1st Edition, McGraw Hill Education, 2017. (ISBN: 978-9352605224)

Possible list of practicals:

- 1. Transmit a string using UART
- 2. Point-to-Point communication of two Motes over the radio frequency.
- Multi-point to single point communication of Motes over the radio frequency. LAN (Subnetting).
- 4. I2C protocol study
- 5. Reading Temperature and Relative Humidity value from the sensor

COM	APUTER NET	WORKS				
	SEMESTER –	VI				
Subject Code	BVOCAS352	IA Marks	20			
Number of Lecture Hours/Week	er of Lecture Hours/Week 03 Exam Marks 80					
Total Number of Lecture Hours	36	Exam Hours	03			
	CREDITS – ()3				
Course objectives: This course will	enable students to					
CO1: Demonstration of application	layer protocols					
CO2: Discuss transport layer service	es and understand	UDP and TCP protocols				
CO3: Explain routers, IP and Routi	ng Algorithms in	network layer				
CO4: Disseminate the Wireless and	Mobile Networks	covering IEEE 802.11 S	standard			
CO5: Illustrate concepts of Multime	dia Networking, S	Security and Network Ma	anagement			
Module – 1			Tea	chin		
			g Ho	ours		
Application Layer: Principles of	Network Applic	ations: Network Applic	ation 9 Ho	ours		
Architectures, Processes Commu	inicating, Transp	ort Services Availabl	e to			
Applications, Transport Services	Provided by the	Internet, Application-I	Layer			
Protocols. The Web and HTTP: Ov	rerview of HTTP,	Non-persistent and Persi	istent			
Connections, HTTP Message For	rmat, User-Server	· Interaction: Cookies,	Web			
Caching, The Conditional GET,	File Transfer: F	TP Commands & Re	plies,			
Electronic Mail in the Internet: SI	MTP, Comparisor	n with HTTP, Mail Mes	ssage			
Format, Mail Access Protocols, D	NS; The Internet's	s Directory Service: Ser	vices			
Provided by DNS, Overview of He	ow DNS Works,	DNS Records and Mess	ages,			
Peer-to-Peer Applications: P2P File	Distribution, Dist	ributed Hash Tables.				
Module – 2			I			
Transport Layer : Introduction	and Transport-L	ayer Services: Relation	nship 9 H o	ours		
Between Transport and Network L	ayers, Overview of	of the Transport Layer i	n the			
Internet, Multiplexing and Demult	iplexing: Connect	ionless Transport: UDP,	UDP			
Segment Structure, UDP Checksum	, Principles of Rel	iable Data Transfer: Bui	lding			
a Reliable Data Transfer Protocol, I	Pipelined Reliable	Data Transfer Protocols	, Go-			
Back-N, Selective repeat, Conn	ection-Oriented	Transport TCP: The	ТСР			
Connection, TCP Segment Structure	re, Round-Trip Ti	me Estimation and Tim	eout,			
Reliable Data Transfer, Flow Contr	ol, TCP Connectio	on Management, Principl	les of			

Congestion Control: The Causes and the Costs of Congestion, Approaches to					
Congestion Control, Network-assisted congestion-control example, ATM ABR					
Congestion control, TCP Congestion Control: Fairness.					
Module – 3					
The Network layer: What's Inside a Router? Input Processing, Switching, Output	9 Hours				
Processing, Where Does Queuing Occur? Routing control plane, IPv6,A Brief					
foray into IP Security, Routing Algorithms: The Link-State (LS) Routing					
Algorithm, The Distance-Vector (DV) Routing Algorithm, Hierarchical Routing,					
Routing in the Internet, Intra-AS Routing in the Internet: RIP, Intra-AS Routing in					
the Internet: OSPF, Inter/AS Routing: BGP, Broadcast Routing Algorithms and					
Multicast.					
Module –4					
Multimedia Networking: Properties of video, properties of Audio, Types of	9 Hours				
multimedia Network Applications, Streaming stored video: UDP Streaming,					
HTTP Streaming, Adaptive streaming and DASH, content distribution Networks,					
case studies: : Netflix, You Tube and Kankan. Network Support for Multimedia:					
Dimensioning Best-Effort Networks, Providing Multiple Classes of Service,					
Diffserv, Per-Connection Quality-ofService (QoS) Guarantees: Resource					
Reservation and Call Admission					
Course outcomes: The students should be able to:					
CO1: Explain principles of application layer protocols					
CO2: Recognize transport layer services and infer udp and tcpprotocols					
CO3: Classify routers, ip and routing algorithms in network layer					
CO4: Understand the wireless and mobile networks covering ieee 802.11standard					
CO5: Describe multimedia networking and network management					
Question paper pattern:					
• The question paper will have two parts, PART-A (20 Marks) and PART-B (8	30 Marks)				
• PART-A will have 12 questions covering all four modules the students must	answer 10				
questions					
• PART-B will have total eight questions covering all four modules					
• In Part-B there will be 2 full questions (with a maximum of three sub question	ns) from				
each module					

The students will have to answer 4 full questions, selecting one full question from each

module

Text Books:

 James F Kurose and Keith W Ross, Computer Networking, A Top-Down Approach, Sixth edition, Pearson,2017.

Reference Books:

- 1. Behrouz A Forouzan, Data and Communications and Networking, Fifth Edition, McGraw Hill, Indian Edition
- 2. Larry L Peterson and Brusce S Davie, Computer Networks, fifth edition, ELSEVIER
- 3. Andrew S Tanenbaum, Computer Networks, fifth edition, Pearson
- 4. Mayank Dave, Computer Networks, Second edition, Cengage Learning

ETHICA	L HACKING T	TECHNIQUES	
	SEMESTER –	·VI	
Subject Code	BVOCAS353	IA Marks	20
Number of Lecture Hours/Week	03	Exam Marks	80
Total Number of Lecture Hours	36	Exam Hours	03
	CREDITS – (03	
Course objectives: This course will	enable students to)	
CO1: Knowledge about Ethical H	acking.		
CO2: Understand the basic concep	ots of Open Source	e Intelligence.	
CO3: Analyze the Hacking Techn	iques by developing	ng simple tools	
Module – 1			Teachin
			g Hours
Prerequisites: Cyber Crime Investi	gation and Digital	Laws	9 Hours
Introduction to Ethical Hacking:	Requirements to g	get started to enter into worl	ds
of Hacking – Methodology of Ethic	al Hacking – Ethio	cal Hacking Process.	
Module – 2			
Cyber Issues: Window Password	d Hacking and O	Cracking – Steganography	- 9 Hours
Hiding Secret Message - Anonymo	ous Call, Message	and Email Header Analysis	5 -
Access Darknet or Darkweb Using	TOR : Anonymou	is Browsing - Access Darkr	let
or Darkweb Using TOR : Anonymo	ous Browsing		
Module – 3			
Malware and Keylogger Analy			
Introduction to Malware – Static	•	e	&
Penetration Testing - Introduction of	f Keylogger : Art	of Spying	
Module –4			
Ethical Hacking Lab Setup: Cybe	•	e	
Basics of Kali Linux : Hackers Og			
Linux : Hacking Windows 7,8,10	Like Blackhat -	Bug Bounty Hunting : W	eb
Application Penetration Testing			
Course outcomes: The students sl			
CO1: Gain knowledge about ethical	• •	-	
	ttacks,attackersand	dsecuritythreatsandvulnerab	ilitiespresent
in the computer system.			

CO3: Examine how social engineering can be done by attacker to gain access of useful &sensitive information about the confidential data

CO4: Learn about cryptography, and basics of web application attacks.

CO5:Gainknowledgeofthetools,techniquesandethicalissueslikelytofacethedomainofethical hacking and ethical responsibilities.

Question paper pattern:

- The question paper will have two parts, PART-A (20 Marks) and PART-B (80 Marks)
- PART-A will have 12 questions covering all four modules the students must answer 10 questions
- PART-B will have total eight questions covering all four modules
- In Part-B there will be 2 full questions (with a maximum of three sub questions) from each module

The students will have to answer 4 full questions, selecting one full question from each module

Text Books:

1. Charles P. Pfleeger Shari Lawrence Pfleeger Jonathan Margulies, Security inComputing, 5th Edition, Pearson Education, 2015

Reference Books:

- 1. Martti Lehto, Pekka Neittaanmäki, Cyber Security: Analytics, Technology and Automation edited, Springer International Publishing Switzerland, 2015
- 2. E Book: https://www.newhorizons.com/promotions/cybersecurity-ebooks
- MOOC: https://www.mooc-list.com/course/penetration-testing-and-ethical-hackingcybrary

Ň	OSQL DATA	BASE	
	SEMESTER –	VI	
Subject Code	BVOCAS354	IA Marks	20
Number of Lecture Hours/Week	03	Exam Marks	80
Total Number of Lecture Hours	36	Exam Hours	03
	CREDITS – ()3	
Course objectives: This course will	enable students to		
CO1: Define, compare and use the	ne four types of	NoSQL Databases (Docur	nent-oriented,
KeyValue Pairs, Column-ori	ented and Graph).		
CO2: Demonstrate an understanding	ng of the detailed	l architecture, define objec	ts, load data,
query data and performance	tune Column-orie	nted NoSQL databases.	
CO3: Explain the detailed architect	ure, define object	s, load data, query data and	l performance
tune Document-oriented No.	SQL databases.		
Module – 1			Teachin
			g Hours
Why NoSQL? The Value of Rela	ational Databases,	Getting at Persistent Da	a, 9 Hours
Concurrency, Integration, A (Mo	stly) Standard M	odel, Impedance Mismato	h,
Application and Integration Databa	uses, Attack of the	Clusters, The Emergence	of
NoSQL, Aggregate Data Model	s; Aggregates,	Example of Relations a	nd
Aggregates, Consequences of Agg	regate Orientation	n, Key-Value and Docume	nt
Data Models, Column-Family	Stores, Summa	arizing Aggregate-Orient	ed
Databases. More Details on Databases.	ta Models; Relat	ionships, Graph Database	es,
Schemaless Databases, Materialized	l Views, Modeling	g for Data Access.	
Module – 2			
Distribution Models; Single Server	, Sharding, Maste	er-Slave Replication, Peer-t	o- 9 Hours
Peer Replication, Combining Sha	arding and Replie	cation. Consistency, Upda	te
Consistency, Read Consistency,	Relaxing Consis	tency, The CAP Theorem	n,
Relaxing Durability, Quorums. Version Stamps, Business and System			
Transactions, Version Stamps on M	ultiple Nodes		
Module – 3			1
Map-Reduce, Basic Map-Reduce,	Partitioning and C	Combining, Composing Ma	p- 9 Hours
Reduce Calculations, A Two Sta	ge Map-Reduce	Example, Incremental Ma	p-
Reduce Key-Value Databases, W	hat Is a Key-Va	lue Store, Key-Value Sto	re

	1
Features, Consistency, Transactions, Query Features, Structure of Data, Scaling,	
Suitable Use Cases, Storing Session Information, User Profiles, Preference,	
Shopping Cart Data, When Not to Use, Relationships among Data, Multioperation	
Transactions, Query by Data, Operations by Sets	
Module –4	
Introduction to MongoDB, Installing MongoDB, The Data Model, Working with	9 Hours
Data, Advanced Queries, Database Administration, Replication, Sharding	
Course outcomes: The students should be able to:	I
CO1: Define, compare and use the four types of NoSQL databases (document	-oriented,
KeyValue pairs, column-oriented andgraph).	
CO2: Demonstrate an understanding of the detailed architecture, define objects,	load data,
query data and performance tune column-oriented NoSQLdatabases.	
CO3: Explain the detailed architecture, define objects, load data, query data and per	formance
tune document-oriented NoSQLdatabases	
Question paper pattern:	
• The question paper will have two parts, PART-A (20 Marks) and PART-B (8	30 Marks)
• PART-A will have 12 questions covering all four modules the students must	answer 10
questions	
• PART-B will have total eight questions covering all four modules	
• In Part-B there will be 2 full questions (with a maximum of three sub question	ns) from
each module	
The students will have to answer 4 full questions, selecting one full question	from each
module	
Text Books:	
1. Sadalage, P. & Fowler, NoSQL Distilled: A Brief Guide to the Emergin	g World of
Polyglot Persistence, Pearson Addision Wesley, 2012	
2 The Definitive Guide to MongoDB By David Hows Peter Memb	rov Eolo

 The Definitive Guide to MongoDB, By Davud Hows, Peter Membrey, Eelco Plugge, Tim Hawkins, Third Edition.

Reference Books:

- Dan Sullivan, "NoSQL for Mere Mortals", 1st Edition, Pearson Education India, 2015. (ISBN13: 978-9332557338)
- Dan McCreary and Ann Kelly, "Making Sense of NoSQL: A guide for Managers and the Rest of us", 1st Edition, Manning Publication/Dreamtech Press, 2013. (ISBN-13: 978-9351192022)
- 3. Kristina Chodorow, "Mongodb: The Definitive Guide- Powerful and Scalable Data Storage", 2nd Edition, O'Reilly Publications, 2013. (ISBN-13: 978-9351102694)
- Practical MongoDB, By Shakuntala Gupta Edward, Navin Sabharwal.(ISBN-13 (pbk): 978-1-4842-0648-5)
- 5. Professional NoSQL, By Shashank Tiwari.(ISBN: 978-0-470-94224-6)

PROJECT WORK SEMESTER – VI					
Number of Lecture Hours/Week	Nil	Exam Marks	180		
Total Number of Lecture Hours	Nil	Exam Hours	03		
CREDITS – 06					

Course Outcomes:

CO1: Have the ability to obtain and use the mathematical, scientific and engineering-based knowledge towards an in-depth technical efficacy in the field of software development

CO2: Have the ability to identify, conclude and resolve software development related issues.

CO3:Able to design a system, component or process to fulfill the needs in the actual constraints like surroundings, community, and ethic and cyber security.

CO4: Understand and be determined towards professional responsibility and ethics.

- CO5: Have the ability to design and conduct experiments, as well as analyze and translate data.
- CO6: Have the ability to use the method, skills and modern software development equipment in software engineering practices.
- CO7: Have the ability to function effectively as individuals and group members, along with the ability to lead and manage.
- CO8: Have the ability to identify and be in possession of lifelong learning capability.

Project Phase-I: Project Phase-II: Project Phase-III: Final Evaluation

		Scł	neme of Examin	nations					
		Ļ	/II/III/IV Seme	sters					
	Particulars	No of	Instruction	Duration of		Marks		Credits	
		course	Hours/Week	Exam(Hour					
		s		s)					
General	2 Languages	2L	2*2	2*3	2*	2*80	2*100	4	
Education					20				
	2 Core Papers	2T	2*3	2*3	2*	2*80	2*100	6	
					20				
	1 Elective	1T	1*2	1*2	1*	1*80	1*100	2	
					20				
Skill	2 Practicals	2P	2*6	2*3	3*	3*80	3*100	12	
Component	with 1 Project				20				
		1	1*6					6	
		Project							
	I		V/VI Semeste	ers				I	
General	4 Core	4T	4*3	4*3	4*20	4*80	4*100	12	
Education	Papers								
Skill	2 Practicals	2P	2*6	2*3	3*20	3*80	3*100	12	
Component	with 1 project								
	with								
	Internship								
		1	1*6					6	
		Project							
								60	